scholarly journals Bacterial communication

2021 ◽  
Vol 36 (4) ◽  
Author(s):  
Marc Artiga
2016 ◽  
Vol 10 (2) ◽  
pp. 153-166 ◽  
Author(s):  
Sivaramakrishnan Subramaniyan ◽  
Sasikumar Divyasree ◽  
Girija Sadasivan Sandhia

Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1831
Author(s):  
Natalia Herrera ◽  
Fernando Echeverri

Although several theories have been postulated to explain cyanobacterial blooms, their biochemical origin has not yet been found. In this work, we explore the existence of bacterial communication, called quorum sensing, in Microcystis aeruginosa and Cylindrospermopsis raciborskii. Thus, the application of several known acylhomoserine lactones to cultures of both cyanobacteria causes profound metabolic. At 72 h post-application, some of them produced substantial increases in cell proliferation, while others were inhibitors. There was a correlation with colony-forming activity for most of them. According to ELISA analysis, the microcystin levels were increased with some lactones. However, there was a clear difference between M. aeruginosa and C. raciborskii culture since, in the first one, there was an inducing effect on cell proliferation, while in C. raciborskii, the effects were minor. Besides, there were compound inhibitors and inducers of microcystins production in M. aeruginosa, but almost all compounds were only inducers of saxitoxin production in C. raciborskii. Moreover, each lactone appears to be involved in a specific quorum sensing process. From these results, the formation of cyanobacterial blooms in dams and reservoirs could be explained since lactones may come from cyanobacteria and other sources as bacterial microflora-associated or exogenous compounds structurally unrelated to lactones, such as drugs, industrial effluents, and agrochemicals.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Weijia He ◽  
Huamei Yang ◽  
Xiang Wang ◽  
Hongmei Li ◽  
Qingli Dong

Abstract Quorum sensing (QS) can exist in food-related bacteria and potentially affect bacterial growth through acyl-homoserine lactones (AHLs). To verify the role of QS compounds in the cell-free supernatant, this study examined the effect of supernatant extracted from Pseudomonas aeruginosa culture on the growth kinetics of Salmonella Enteritidis. The results showed that the lag time (λ) of S. Enteritidis was apparently reduced (p < 0.05) under the influence of P. aeruginosa culture supernatant compared with the S. Enteritidis culture supernatant. HPLC-MS/MS test demonstrated that AHLs secreted by P. aeruginosa were mainly C14-HSL with a content of 85.71 μg/mL and a small amount of 3-oxo-C12-HSL. In addition, the commercially synthetic C14-HSL had positive effects on the growth of S. Enteritidis, confirming once again that the growth of S. Enteritidis was affected by AHL metabolized by other bacteria and the complexity of bacterial communication.


2005 ◽  
Vol 280 (11) ◽  
pp. 10403-10409 ◽  
Author(s):  
Günter Brader ◽  
Solveig Sjöblom ◽  
Heidi Hyytiäinen ◽  
Karen Sims-Huopaniemi ◽  
E. Tapio Palva

Author(s):  
Anjali Kumari ◽  
Patrizia Pasini ◽  
Sapna K. Deo ◽  
Deborah Flomenhoft ◽  
Harohalli Shashidhar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document