Real Time PCR on Disposable PDMS Chip with a Miniaturized Thermal Cycler

2005 ◽  
Vol 7 (4) ◽  
pp. 273-279 ◽  
Author(s):  
Q. Xiang ◽  
B. Xu ◽  
R. Fu ◽  
D. Li
2001 ◽  
Vol 73 (2) ◽  
pp. 286-289 ◽  
Author(s):  
Phillip Belgrader ◽  
Steve Young ◽  
Bob Yuan ◽  
Michael Primeau ◽  
Lee A. Christel ◽  
...  

Toxins ◽  
2015 ◽  
Vol 7 (3) ◽  
pp. 812-820 ◽  
Author(s):  
Simona Sanzani ◽  
Massimo Reverberi ◽  
Corrado Fanelli ◽  
Antonio Ippolito

2001 ◽  
Vol 73 (2) ◽  
pp. 391-391 ◽  
Author(s):  
Phillip Belgrader ◽  
Steve Young ◽  
Bob Yuan ◽  
Michael Primeau ◽  
Lee A. Christel ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1132
Author(s):  
Andrea Zendrini ◽  
Valentina Carta ◽  
Virginia Filipello ◽  
Laura Ragni ◽  
Elena Cosciani-Cunico ◽  
...  

Salmonella and Campylobacter ssp. are bacterial pathogens responsible for most foodborne infections in EU countries. Poultry serves as a reservoir for these pathogens, and its important role in the meat industry makes it essential to develop a rapid detection assay able to provide results in one day. Indeed, the rapid identification of foodborne pathogens is an important instrument for the monitoring and prevention of epidemic outbreaks. To date, Salmonella and Campylobacter screening is mainly conducted through molecular methods (PCR or real-time PCR) performed after 18–24 h long enrichments. In this study, we evaluated short enrichments (0, 2, 4, and 6 h) combined with a colorimetric loop-mediated isothermal AMPlification (LAMP) or real-time PCR to detect Salmonella and Campylobacter in poultry meat contaminated at different concentration levels (101, 103, and 105 CFU/g). Our results show that real-time PCR allows the detection of Salmonella and Campylobacter, even after shorter enrichment times than prescribed by ISO references; particularly, it detected Salmonella down to 101 CFU/g since T0 and Campylobacter from 103 CFU/g since T0. Detection with LAMP was comparable to real-time PCR without the requirement of a thermal cycler and with shorter execution times. These characteristics make colorimetric LAMP a valid alternative when one-day results are needed, improving the timely identification of positive meat batches, even in the absence of specialized instrumentation.


Author(s):  
Michael B. Sayers ◽  
Tara M. Dalton ◽  
Mark R. Davies

Real-time Polymerase Chain Reaction (PCR) is the preferred method for quantification of gene expression levels due to its extreme sensitivity. Fluorescence based real-time PCR is commonly used for the quantification of the initial amount of a specific sequence of DNA. Real-time quantification may be achieved using fluorescent dyes, by optically monitoring the product formation as the PCR cycles progress. Stationary well based real-time quantification is quite common, however continuous flow real-time PCR which is the aim of this work is still in its infancy. A compact, high throughput continuous flow thermal cycler has been developed which allows for real-time fluorescent measurements to be obtained. The principle of operation of this device is that the three thermal zones required for a polymerase chain reactor are maintained on both sides of an aluminium block and bio-compatible FEP Teflon capillary tubing is then wrapped around these constant temperature blocks. The capillary tubing is wrapped around the device fifteen times which provides thirty PCR thermal cycles. The device has been designed and optimised to accurately monitor the product expression level using the double stranded DNA binding dye SYBR green I. Initially the PCR mixture is segmented into small nanoreactors, separated by an immiscible carrier fluid to eliminate cross contamination and reduce the likelihood of sample degradation due to contact with the capillary wall. These PCR nanoreactors are then cycled through the tubing and the DNA amplified. Fluorescent optical monitoring of these nanoreactors takes place where a water glycerine mixture, which is refractive index matched to the tubing, allows for improved fluorescent measurements of the nano-volume reactors to be obtained. Plasmid DNA, 240 base pairs long, has been successfully amplified using this device and the temperatures for the denaturation, annealing and extension phases have been accurately measured. Real-time fluorecence images of the flowing nano-volumes were recorded every second cycle using a CCD camera and from these images amplification curves have been successfully generated. Samples with various initial concentrations of DNA have been thermally cycled on the continuous flow reactor. The measured increase in fluorescence intensity from the flowing nano-volume reactors as they progressed through the thermal cycler demonstrated the effect of initial DNA template concentration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Manash Jyoti Kalita ◽  
Kalpajit Dutta ◽  
Gautam Hazarika ◽  
Ridip Dutta ◽  
Simanta Kalita ◽  
...  

AbstractAs the COVID-19 infection continues to ravage the world, the advent of an efficient as well as the economization of the existing RT-PCR based detection assay essentially can become a blessing in these testing times and significantly help in the management of the pandemic. This study demonstrated an innovative and rapid corroboration of COVID-19 test based on innovative multiplex PCR. An assessment of optimal PCR conditions to simultaneously amplify the SARS-CoV-2 genes E, S and RdRp has been made by fast-conventional and HRM coupled multiplex real-time PCR using the same sets of primers. All variables of practical value were studied by amplifying known target-sequences from ten-fold dilutions of archived positive samples of COVID-19 disease. The multiplexing with newly designed E, S and RdRp primers have shown an efficient amplification of the target region of SARS-CoV-2. A distinct amplification was observed in 37 min using thermal cycler while it took 96 min in HRM coupled real time detection using SYBR green over a wide range of template concentrations. Our findings revealed decent concordance with other commercially available detection kits. This fast HRM coupled multiplex real-time PCR with SYBR green approach offers rapid and sensitive detection of SARS-CoV-2 in a cost-effective manner apart from the added advantage of primer compatibility for use in conventional multiplex PCR. The highly reproducible novel approach can propel extended applicability for developing sustainable commercial product besides providing relief to a resource limited setting.


2005 ◽  
Vol 147 (9) ◽  
pp. 373-379 ◽  
Author(s):  
F. Zeeh ◽  
P. Kuhnert ◽  
R. Miserez ◽  
M. G. Doherr ◽  
W. Zimmermann

2010 ◽  
Vol 48 (08) ◽  
Author(s):  
A Brodzinski ◽  
F van Bömmel ◽  
B Fülöp ◽  
B Schlosser ◽  
M Biermer ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document