A simple and efficient procedure for the numerical simulation of wind fields in complex terrain

2007 ◽  
Vol 125 (3) ◽  
pp. 417-439 ◽  
Author(s):  
Massimiliano Burlando ◽  
Luigi Carassale ◽  
Emilia Georgieva ◽  
Corrado F. Ratto ◽  
Giovanni Solari
2019 ◽  
Vol 12 (2) ◽  
pp. 59-66
Author(s):  
Lian Shen ◽  
◽  
Chenglong Wei ◽  
Chunsheng Cai ◽  
Xiaoyan Liu ◽  
...  

Author(s):  
Xiaoyu Luo ◽  
Yiwen Cao

In the field of civil engineering, the meteorological data available usually do not have the detailed information of the wind near a certain site. However, the detailed information of the wind field during typhoon is important for the wind-resistant design of civil structures. Furthermore, the resolution of the meteorological data available by the civil engineers is too coarse to be applicable. Therefore it is meaningful to obtain the detailed information of the wind fields based on the meteorological data provided by the meteorological department. Therefore, in the present study, a one-way coupling method between WRF and CFD is adopted and a method to keep the mass conservation during the simulation in CFD is proposed. It is found that using the proposed one-way coupling method, the predicted wind speed is closer to the measurement. And the curvature of the wind streamline during typhoon is successfully reproduced.


2006 ◽  
Vol 31 (3) ◽  
pp. 95-104 ◽  
Author(s):  
Takashi MARUYAMA ◽  
Hirohiko ISHIKAWA ◽  
Takanori UCHIDA ◽  
Hiromasa KAWAI ◽  
Yuji OHYA

2020 ◽  
Vol 12 (18) ◽  
pp. 2930 ◽  
Author(s):  
Anna del Moral ◽  
Tammy M. Weckwerth ◽  
Tomeu Rigo ◽  
Michael M. Bell ◽  
María Carmen Llasat

Convective activity in Catalonia (northeastern Spain) mainly occurs during summer and autumn, with severe weather occurring 33 days per year on average. In some cases, the storms have unexpected propagation characteristics, likely due to a combination of the complex topography and the thunderstorms’ propagation mechanisms. Partly due to the local nature of the events, numerical weather prediction models are not able to accurately nowcast the complex mesoscale mechanisms (i.e., local influence of topography). This directly impacts the retrieved position and motion of the storms, and consequently, the likely associated storm severity. Although a successful warning system based on lightning and radar observations has been developed, there remains a lack of knowledge of storm dynamics that could lead to forecast improvements. The present study explores the capabilities of the radar network at the Meteorological Service of Catalonia to retrieve dual-Doppler wind fields to study the dynamics of Catalan thunderstorms. A severe thunderstorm that splits and a tornado-producing supercell that is channeled through a valley are used to demonstrate the capabilities of an advanced open source technique that retrieves dynamical variables from C-band operational radars in complex terrain. For the first time in the Iberian Peninsula, complete 3D storm-relative winds are obtained, providing information about the internal dynamics of the storms. This aids in the analyses of the interaction between different storm cells within a system and/or the interaction of the cells with the local topography.


2013 ◽  
Vol 444-445 ◽  
pp. 549-554
Author(s):  
Huan Ran Hu ◽  
Guan Xin Hong

It is important for the research of flight characteristics to master the distribution of wind field and the character of turbulence intensity in a complex-terrain mountain. Based on the potential flow theories in fluid dynamics, a numerical simulation method of complex terrain including asymmetrical and symmetrical mountains has been developed in this paper. In particular, asymmetrical mountains are simulated by the combination of two transformed quarter-semiellipsoids. Furthermore, mountain-induced airflow is calculated based on potential flow theory, which could reflect the characteristic of wind field. As an example, the wind field near Dingling airport in Beijing has been simulated and analyzed by this method. The results demonstrate that this method is suitable and accurate for engineering practice, and also applicable for flight dynamics characteristics analysis of aircrafts.


Sign in / Sign up

Export Citation Format

Share Document