scholarly journals C-Band Dual-Doppler Retrievals in Complex Terrain: Improving the Knowledge of Severe Storm Dynamics in Catalonia

2020 ◽  
Vol 12 (18) ◽  
pp. 2930 ◽  
Author(s):  
Anna del Moral ◽  
Tammy M. Weckwerth ◽  
Tomeu Rigo ◽  
Michael M. Bell ◽  
María Carmen Llasat

Convective activity in Catalonia (northeastern Spain) mainly occurs during summer and autumn, with severe weather occurring 33 days per year on average. In some cases, the storms have unexpected propagation characteristics, likely due to a combination of the complex topography and the thunderstorms’ propagation mechanisms. Partly due to the local nature of the events, numerical weather prediction models are not able to accurately nowcast the complex mesoscale mechanisms (i.e., local influence of topography). This directly impacts the retrieved position and motion of the storms, and consequently, the likely associated storm severity. Although a successful warning system based on lightning and radar observations has been developed, there remains a lack of knowledge of storm dynamics that could lead to forecast improvements. The present study explores the capabilities of the radar network at the Meteorological Service of Catalonia to retrieve dual-Doppler wind fields to study the dynamics of Catalan thunderstorms. A severe thunderstorm that splits and a tornado-producing supercell that is channeled through a valley are used to demonstrate the capabilities of an advanced open source technique that retrieves dynamical variables from C-band operational radars in complex terrain. For the first time in the Iberian Peninsula, complete 3D storm-relative winds are obtained, providing information about the internal dynamics of the storms. This aids in the analyses of the interaction between different storm cells within a system and/or the interaction of the cells with the local topography.

1988 ◽  
Vol 128 ◽  
pp. 285-286
Author(s):  
R. D. Rosen ◽  
D. A. Salstein ◽  
T. Nehrkorn ◽  
J. O. Dickey ◽  
T. M. Eubanks ◽  
...  

A new approach to forecasting changes in length-of-day (δl.o.d) with lead times from one to ten days is examined. The approach is based on the high correlation that has been shown to exist between high frequency changes in l.o.d. and those in the atmosphere's angular momentum (M). Because forecasts of tropospheric values of M can be calculated from the zonal wind fields produced by operational numerical weather prediction models, it seems worth investigating whether these forecasts are sufficiently skillful to use to infer the evolution of δl.o.d. Here, we examine the quality of M forecasts made by the Medium Range Forecast (MRF) model of the U.S. National Meteorological Center (NMC). By comparing these forecasts against those based on a simple model of persistence, we find that skillful forecasts of M are being achieved on average by the MRF, although there has been much month-to-month variability in forecast quality. Overall, our results indicate that for prediction lead times of 1–10 days, dynamically-based forecasts of δl.o.d. represent a viable alternative to the empirical approaches currently in use.


2008 ◽  
Vol 2 (No. 4) ◽  
pp. 156-168 ◽  
Author(s):  
L. Březková ◽  
M. Šálek ◽  
E. Soukalová ◽  
M. Starý

In central Europe, floods are natural disasters causing the greatest economic losses. One way to reduce partly the flood-related damage, especially the loss of lives, is a functional objective forecasting and warning system that incorporates both meteorological and hydrological models. Numerical weather prediction models operate with horizontal spatial resolution of several dozens of kilometres up to several kilometres, nevertheless, the common error in the localisation of the heavy rainfall characteristic maxima is mostly several times as large as the grid size. The distributive hydrological models for the middle sized basins (hundreds to thousands of km<sup>2</sup>) operate with the resolution of hundreds of meters. Therefore, the (in) accuracy of the meteorological forecast can heavily influence the following hydrological forecast. In general, we can say that the shorter is the duration of the given phenomenon and the smaller area it hits, the more difficult is its prediction. The time and spatial distribution of the predicted precipitation is still one of the most difficult tasks of meteorology. Hydrological forecasts are created under the conditions of great uncertainty. This paper deals with the possibilities of the current hydrology and meteorology with regard to the predictability of the flood events. The Czech Hydrometeorological Institute is responsible by law for the forecasting flood service in the Czech Republic. For the precipitation and temperature forecasts, the outputs of the numerical model of atmosphere ALADIN are used. Moreover, the meteorological community has available operational outputs of many weather prediction models, being run in several meteorological centres around the world. For the hydrological forecast, the HYDROG and AQUALOG models are utilised. The paper shows examples of the hydrological flood forecasts from the years 2002&ndash;2006 in the Dyje catchment, attention being paid to floods caused by heavy rainfalls in the summer season. The results show that it is necessary to take into account the predictability of the particular phenomenon, which can be used in the decision making process during an emergency.


2020 ◽  
Author(s):  
Nicola Bodini ◽  
Julie K. Lundquist ◽  
Mike Optis

Abstract. Current turbulence parameterizations in numerical weather prediction models at the mesoscale assume a local equilibrium between production and dissipation of turbulence. As this assumption does not hold at fine horizontal resolutions, improved ways to represent turbulent kinetic energy (TKE) dissipation rate (ε) are needed. Here, we use a 6-week data set of turbulence measurements from 184 sonic anemometers in complex terrain at the Perdigão field campaign to suggest improved representations of dissipation rate. First, we demonstrate that a widely used Mellor, Yamada, Nakanishi, and Niino (MYNN) parameterization of TKE dissipation rate leads to a large inaccuracy and bias in the representation of ε. Next, we assess the potential of machine-learning techniques to predict TKE dissipation rate from a set of atmospheric and terrain-related features. We train and test several machine-learning algorithms using the data at Perdigão, and we find that multivariate polynomial regressions and random forests can eliminate the bias MYNN currently shows in representing ε, while also reducing the average error by up to 30 %. Of all the variables included in the algorithms, TKE is the variable responsible for most of the variability of ε, and a strong positive correlation exists between the two. These results suggest further consideration of machine-learning techniques to enhance parameterizations of turbulence in numerical weather prediction models.


2020 ◽  
Vol 13 (9) ◽  
pp. 4271-4285
Author(s):  
Nicola Bodini ◽  
Julie K. Lundquist ◽  
Mike Optis

Abstract. Current turbulence parameterizations in numerical weather prediction models at the mesoscale assume a local equilibrium between production and dissipation of turbulence. As this assumption does not hold at fine horizontal resolutions, improved ways to represent turbulent kinetic energy (TKE) dissipation rate (ϵ) are needed. Here, we use a 6-week data set of turbulence measurements from 184 sonic anemometers in complex terrain at the Perdigão field campaign to suggest improved representations of dissipation rate. First, we demonstrate that the widely used Mellor, Yamada, Nakanishi, and Niino (MYNN) parameterization of TKE dissipation rate leads to a large inaccuracy and bias in the representation of ϵ. Next, we assess the potential of machine-learning techniques to predict TKE dissipation rate from a set of atmospheric and terrain-related features. We train and test several machine-learning algorithms using the data at Perdigão, and we find that the models eliminate the bias MYNN currently shows in representing ϵ, while also reducing the average error by up to almost 40 %. Of all the variables included in the algorithms, TKE is the variable responsible for most of the variability of ϵ, and a strong positive correlation exists between the two. These results suggest further consideration of machine-learning techniques to enhance parameterizations of turbulence in numerical weather prediction models.


Author(s):  
Yunji Zhang ◽  
David J. Stensrud ◽  
Eugene E. Clothiaux

AbstractRecent studies have demonstrated advances in the analysis and prediction of severe thunderstorms and other weather hazards by assimilating infrared (IR) all-sky radiances into numerical weather prediction models using advanced ensemble-based techniques. It remains an open question how many of these advances are due to improvements in the radiance observations themselves, especially when compared with radiance observations from preceding satellite imagers. This study investigates the improvements gained by assimilation of IR all-sky radiances from the Advanced Baseline Imager (ABI) onboard the GOES-16 satellite compared to those from its predecessor imager. Results show that all aspects of the improvements in ABI compared with its predecessor imager – finer spatial resolution, shorter scanning intervals, and more channels covering a wider range of the spectrum – contribute to more accurate ensemble analyses and forecasts of the targeted severe thunderstorm event, but in different ways. The clear-sky regions within the assimilated all-sky radiance fields have a particularly beneficial influence on the moisture fields. Results also show that assimilating different IR channels can lead to oppositely signed increments in the moisture fields, a byproduct of inaccurate covariances at large distances resulting from sampling errors. These findings pose both challenges and opportunities in identifying appropriate vertical localizations and IR channel combinations to produce the best possible analyses in support of severe weather forecasting.


2016 ◽  
Author(s):  
N. S. Wagenbrenner ◽  
J. M. Forthofer ◽  
B. K. Lamb ◽  
K. S. Shannon ◽  
B. W. Butler

Abstract. Wind predictions in complex terrain are important for a number of applications. Dynamic downscaling of numerical weather prediction (NWP) model winds with a high resolution wind model is one way to obtain a wind forecast that accounts for local terrain effects, such as wind speed-up over ridges, flow channeling in valleys, flow separation around terrain obstacles, and flows induced by local surface heating and cooling. In this paper we investigate the ability of a mass-consistent wind model for downscaling near-surface wind predictions from four NWP models in complex terrain. Model predictions are compared with surface observations from a tall, isolated mountain. Downscaling improved near-surface wind forecasts under high-wind (near-neutral atmospheric stability) conditions. Results were mixed during upslope and downslope (non-neutral atmospheric stability) flow periods, although wind direction predictions generally improved with downscaling. This work constitutes evaluation of a diagnostic wind model at unprecedented high spatial resolution in terrain with topographical ruggedness approaching that of typical landscapes in the western US susceptible to wildland fire.


2006 ◽  
Vol 23 (1) ◽  
pp. 46-66 ◽  
Author(s):  
Ming Xue ◽  
Mingjing Tong ◽  
Kelvin K. Droegemeier

Abstract A framework for Observing System Simulation Experiments (OSSEs) based on the ensemble square root Kalman filter (EnSRF) technique for assimilating data from more than one radar network is described. The system is tested by assimilating simulated radial velocity and reflectivity data from a Weather Surveillance Radar-1988 Doppler (WSR-88D) radar and a network of four low-cost radars planned for the Oklahoma test bed by the new National Science Foundation (NSF) Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere (CASA). Such networks are meant to adaptively probe the lower atmosphere that is often missed by the existing WSR-88D radar network, so as to improve the detection of low-level hazardous weather events and to provide more complete data for the initialization of numerical weather prediction models. Different from earlier OSSE work with ensemble Kalman filters, the radar data are sampled on the radar elevation levels and a more realistic forward operator based on the Gaussian power-gain function is used. A stretched vertical grid with high vertical resolution near the ground allows for a better examination of the impact of low-level data. Furthermore, the impacts of storm propagation and higher-volume scan frequencies up to one volume scan per minute on the quality of analysis are examined, using a domain of a sufficient size. The generally good analysis compared to earlier work indicates that the filter can effectively handle the non-uniform-resolution data on the radar elevation levels. The assimilation of additional data from a well-positioned (relative to the storm) CASA radar improves the analysis of a supercell storm system that uses data from one WSR-88D radar alone; and the improvement is most significant at the low levels. When data from a single CASA radar are assimilated and when the radar does not provide full coverage of the storm system, significant errors develop in the analysis that cannot be effectively corrected. The combination of three CASA radars produces analyses of similar quality as the combination of one WSR-88D radar and one well-positioned CASA radar. The most significant effect of storm propagation speed appears to be on the data coverage, which in turn affects the analysis quality. It is generally true that the more observations, the better the analysis. The results of the EnSRF assimilation are not very sensitive to the propagation speed. The quality of analysis can be improved by employing faster volume scans. The sensitivity of the EnSRF analysis to the volume scan interval is however much less than that of traditional velocity and thermodynamic retrieval schemes, suggesting the superiority of the EnSRF method compared to traditional methods. The very frequent update of the model state by the filter, even at 1-min intervals, does not show any negative effect, indicating that the analyzed fields are well balanced.


Author(s):  
S. Jafari ◽  
T. Sommer ◽  
N. Chokani ◽  
R. S. Abhari

Prospecting for wind farm sites and pre-development studies of wind energy projects require knowledge of the wind energy resource over large areas (that is, areas of the order of 10’000 km2 and greater). One approach to detail this wind resource is the use of mesoscale numerical weather prediction models. In this paper, the mesoscale Weather Research and Forecasting (WRF) model is used to examine the effect of horizontal grid resolution on the fidelity of the predictions of the wind resource. The simulations are made for three test cases, Switzerland (land area 39’770 km2), Iowa (land area 145,743 km2) and Oregon (land area 248’647 km2), representing a range of terrain types, from complex terrain to flat terrain, over the period from 2006–2010. On the basis of comparisons to the data from meteorological masts and tall communication towers, guidelines are given for the horizontal grid required in the use of mesoscale models of large area wind resource assessment, especially over complex terrain.


2021 ◽  
Vol 9 (11) ◽  
pp. 1257
Author(s):  
Chih-Chiang Wei

Nearshore wave forecasting is susceptible to changes in regional wind fields and environments. However, surface wind field changes are difficult to determine due to the lack of in situ observational data. Therefore, accurate wind and coastal wave forecasts during typhoon periods are necessary. The purpose of this study is to develop artificial intelligence (AI)-based techniques for forecasting wind–wave processes near coastal areas during typhoons. The proposed integrated models employ combined a numerical weather prediction (NWP) model and AI techniques, namely numerical (NUM)-AI-based wind–wave prediction models. This hybrid model comprising VGGNNet and High-Resolution Network (HRNet) was integrated with recurrent-based gated recurrent unit (GRU). Termed mVHR_GRU, this model was constructed using a convolutional layer for extracting features from spatial images with high-to-low resolution and a recurrent GRU model for time series prediction. To investigate the potential of mVHR_GRU for wind–wave prediction, VGGNet, HRNet, and Two-Step Wind-Wave Prediction (TSWP) were selected as benchmark models. The coastal waters in northeast Taiwan were the study area. The length of the forecast horizon was from 1 to 6 h. The mVHR_GRU model outperformed the HR_GRU, VGGNet, and TSWP models according to the error indicators. The coefficient of mVHR_GRU efficiency improved by 13% to 18% and by 13% to 15% at the Longdong and Guishandao buoys, respectively. In addition, in a comparison of the NUM–AI-based model and a numerical model simulating waves nearshore (SWAN), the SWAN model generated greater errors than the NUM–AI-based model. The results of the NUM–AI-based wind–wave prediction model were in favorable accordance with the observed results, indicating the feasibility of the established model in processing spatial data.


2021 ◽  
Author(s):  
Lukas Pfitzenmaier ◽  
Pavlos Kollias ◽  
Ulrich Löhnert

&lt;p&gt;In the last decades, Doppler velocity measurements from zenith pointing radars have evolved to a standard radar variable. Measuring Doppler velocities allow estimating particle sedimentation or fall velocity of hydrometeors and thus offer key information to evaluate micro-physical parametrizations in numerical weather prediction models. In the future, the joint ESA-JAXA satellite mission EarthCARE features the first Doppler capable 94-GHz Cloud Profiling Radar (CPR), with enhanced sensitivity and improved resolution compared to the CloudSat CPR. These features, especially the Doppler velocity measurements, are expected to improve the CPR-based microphysical retrievals in clouds and precipitation and for the first time provide information about convective motion in clouds.&lt;/p&gt;&lt;p&gt;To evaluate EarthCare CPR Doppler velocity from the ground, the Doppler velocity from five ground-based zenith pointing 94 GHz radar spread over Europa should be used in future. To increase the quality of the measured Doppler velocity the antenna miss-pointing has to be estimated. Unknown antenna miss-pointing is the main source of error in Doppler velocity measurements and can reach values on the same order as the fall velocity of pristine ice crystals. Knowing the angle of miss-pointing, the error in the measured Doppler velocity measurements can be corrected and the precision and quality improved. This is especially important for cases where Doppler velocity values are direct input for retrievals, which, e.g., employ multiple radar sensors with matching sampling(?) volumes.&lt;/p&gt;&lt;p&gt;Within this work we will present a retrieval technique to identify the angle of antenna miss-pointing for ground-based radar profilers and correct the measured Doppler velocity values. The retrieval technique is a statistical method requiring the uncorrected Doppler velocity measurements and additional wind information from reanalysis or in parallel measuring sensors. Evaluation of the retrieval was done using different wind input data sets, e.g., ECMWF IFS wind fields or retrieved wind information from Radar scans. Also, the retrieval was used to correct the miss-pointing angles of two in parallel measuring zenith pointing radars and, therefore, correct the velocity errors in dual Doppler velocity field. &amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document