The Role of Wake Production on the Scaling Laws of Scalar Concentration Fluctuation Spectra Inside Dense Canopies

2010 ◽  
Vol 139 (1) ◽  
pp. 83-95 ◽  
Author(s):  
D. Poggi ◽  
G. G. Katul ◽  
B. Vidakovic
2021 ◽  
Vol 104 (3) ◽  
Author(s):  
L. Benoit–Maréchal ◽  
M. E. Jabbour ◽  
N. Triantafyllidis

2020 ◽  
Vol 117 (41) ◽  
pp. 25237-25245 ◽  
Author(s):  
Manouk Abkarian ◽  
Simon Mendez ◽  
Nan Xue ◽  
Fan Yang ◽  
Howard A. Stone

Many scientific reports document that asymptomatic and presymptomatic individuals contribute to the spread of COVID-19, probably during conversations in social interactions. Droplet emission occurs during speech, yet few studies document the flow to provide the transport mechanism. This lack of understanding prevents informed public health guidance for risk reduction and mitigation strategies, e.g., the “6-foot rule.” Here we analyze flows during breathing and speaking, including phonetic features, using orders-of-magnitude estimates, numerical simulations, and laboratory experiments. We document the spatiotemporal structure of the expelled airflow. Phonetic characteristics of plosive sounds like “P” lead to enhanced directed transport, including jet-like flows that entrain the surrounding air. We highlight three distinct temporal scaling laws for the transport distance of exhaled material including 1) transport over a short distance (<0.5 m) in a fraction of a second, with large angular variations due to the complexity of speech; 2) a longer distance, ∼1 m, where directed transport is driven by individual vortical puffs corresponding to plosive sounds; and 3) a distance out to about 2 m, or even farther, where sequential plosives in a sentence, corresponding effectively to a train of puffs, create conical, jet-like flows. The latter dictates the long-time transport in a conversation. We believe that this work will inform thinking about the role of ventilation, aerosol transport in disease transmission for humans and other animals, and yield a better understanding of linguistic aerodynamics, i.e., aerophonetics.


2019 ◽  
Author(s):  
Zhikun Ren ◽  
Takashi Oguchi ◽  
Peizhen Zhang ◽  
Shoichiro Uchiyama

Abstract. The co-seismic landslide volume information is critical to understanding the role of strong earthquake in topographic evolution. However, the co-seismic landslide volumes are mainly obtained using statistical scaling laws, which are not accurate enough for quantitative studies of the spatial pattern of co-seismically induced erosion and the topographic changes caused by the earthquakes. The availability of both pre- and post- earthquake high-resolution DEMs provide us the opportunity to try new approach to get robust landslide volume information. Here, we propose a new method in landslide volume estimate and tested it in Chuetsu region, where a Mw 6.6 earthquake occurred in 2004. Firstly, we align the DEMs by reconstructing the horizontal difference, then we quantitatively obtained the landslide volume in the epicentral area by differencing the pre- and post-earthquake DEMs. We convert the landslide volume into the distribution of average catchment-scale seismically induced denudation. Our results indicate the preserved topography is not only due to the uplifting caused by fault-related folding on the hangwall of Muikamachi fault, but also undergone erosion caused by the seismically induced landslides. Our findings reveal that Chuetsu earthquake mainly roughens the topography in the Chuetsu region of low elevation. This study also reveal that the differential DEM method is a valuable approach in analyzing landslide volume, as well as quantitative geomorphic analysis.


Author(s):  
Moreno Bonaventura ◽  
Luca Maria Aiello ◽  
Daniele Quercia ◽  
Vito Latora

AbstractWhile great emphasis has been placed on the role of social interactions as a driver of innovation growth, very few empirical studies have explicitly investigated the impact of social network structures on the innovation performance of cities. Past research has mostly explored scaling laws of socio-economic outputs of cities as determined by, for example, the single predictor of population. Here, by drawing on a publicly available dataset of the startup ecosystem, we build the first Workforce Mobility Network among metropolitan areas in the US. We found that node centrality computed on this network accounts for most of the variability observed in cities’ innovation performance and significantly outperforms other predictors such as population size or density, suggesting that policies and initiatives aiming at sustaining innovation processes might benefit from fostering professional networks alongside other economic or systemic incentives. As opposed to previous approaches powered by census data, our model can be updated in real-time upon open databases, opening up new opportunities both for researchers in a variety of disciplines to study urban economies in new ways, and for practitioners to design tools for monitoring such economies in real-time.


2021 ◽  
Author(s):  
Tomas Aquino ◽  
Tanguy Le Borgne

&lt;p&gt;The spatial distribution of a solute undergoing advection and diffusion is impacted by the velocity variability sampled by tracer particles. In spatially structured velocity fields, such as porous medium flows, Lagrangian velocities along streamlines are often characterized by a well-defined correlation length and can thus be described by spatial-Markov processes. Diffusion, on the other hand, is generally modeled as a temporal process, making it challenging to capture advective and diffusive dynamics in a single framework. In order to address this limitation, we have developed a description of transport based on a spatial-Markov velocity process along Lagrangian particle trajectories, incorporating the effect of diffusion as a local averaging process in velocity space. The impact of flow structure on this diffusive averaging is quantified through an effective shear rate. The latter is fully determined by the point statistics of velocity magnitudes together with characteristic longitudinal and transverse lengthscales associated with the flow field. For infinite longitudinal correlation length, our framework recovers Taylor dispersion, and in the absence of diffusion it reduces to a standard spatial-Markov velocity model. This novel framework allows us to derive dynamical equations governing the evolution of particle position and velocity, from which we obtain scaling laws for the dependence of longitudinal dispersion on P&amp;#233;clet number. Our results provide new insights into the role of shear and diffusion on dispersion processes in heterogeneous media.&lt;/p&gt;&lt;p&gt;In this presentation, I propose to discuss: (i) Spatial-Markov models and the modeling of diffusion as a spatial rather than temporal process; (ii) The concept of the effective shear rate and its role in the diffusive dynamics of tracer particle velocities; (iii) The role of transverse diffusion and its interplay with velocity heterogeneity on longitudinal solute dispersion.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document