scholarly journals Large-Eddy Simulations of Pollutant Removal Enhancement from Urban Canyons

Author(s):  
Carlo Cintolesi ◽  
Beatrice Pulvirenti ◽  
Silvana Di Sabatino

AbstractTechniques for improving the removal of pollution from urban canyons are crucial for air quality control in cities. The removal mainly occurs at the building roof level, where it is supported by turbulent mixing and hampered by roof shear, which tends to isolate the internal canyon region from the atmospheric flow. Here, a modification of roof infrastructures is proposed with the aim of increasing the former and reducing the latter, overall enhancing the removal mechanisms. The topic is investigated by numerical experiment, using large-eddy simulation to study the paradigmatic case of a periodic square urban canyon at $$ Re=2 \times 10^4$$ R e = 2 × 10 4 . Two geometries are analyzed: one with a smooth building roof, the other having a series of solid obstacles atop the upwind building roof. The pollutant is released at the street level. The simulations are successfully validated against laboratory and numerical datasets, and the primary vortex displacement detected in some laboratory experiments is discussed. The turbulence triggered by the obstacles destroys the sharp shear layer that separates the canyon and the surrounding flow, increasing the mixing. Greater vertical turbulent mass fluxes and more frequent ejection events near the upwind building (where pollution accumulates) are detected. Overall, the obstacles lead to a reduction in the pollution concentration within the canyon of about $$34\%$$ 34 % .

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3078
Author(s):  
Carlo Cintolesi ◽  
Francesco Barbano ◽  
Silvana Di Sabatino

Thermal convective flows are common phenomena in real urban canyons and strongly affect the mechanisms of pollutant removal from the canyon. The present contribution aims at investigating the complex interaction between inertial and thermal forces within the canyon, including the impacts on turbulent features and pollutant removal mechanisms. Large-eddy simulations reproduce infinitely long square canyons having isothermal and differently heated facades. A scalar source on the street mimics the pollutant released by traffic. The presence of heated facades triggers convective flows which generate an interaction region around the canyon-ambient interface, characterised by highly energetic turbulent fluxes and an increase of momentum and mass exchange. The presence of this region of high mixing facilitates the pollutant removal across the interface and decreases the urban canopy drag. The heating-up of upwind facade determines favourable convection that strengthens the primary internal vortex and decreases the pollutant concentration of the whole canyon by 49% compare to the isothermal case. The heating-up of the downwind facade produces adverse convection counteracting the wind-induced motion. Consequently, the primary vortex is less energetic and confined in the upper-canyon area, while a region of almost zero velocity and high pollution concentration (40% more than the isothermal case) appears at the pedestrian level. Finally, numerical analyses allow a definition of a local Richardson number based on in-canyon quantities only and a new formulation is proposed to characterise the thermo-dynamics regimes.


Author(s):  
F. F. Grinstein ◽  
A. A. Gowardhan ◽  
J. R. Ristorcelli

Under-resolved computer simulations are typically unavoidable in practical turbulent flow applications exhibiting extreme geometrical complexity and a broad range of length and time scales. An important unsettled issue is whether filtered-out and subgrid spatial scales can significantly alter the evolution of resolved larger scales of motion and practical flow integral measures. Predictability issues in implicit large eddy simulation of under-resolved mixing of material scalars driven by under-resolved velocity fields and initial conditions are discussed in the context of shock-driven turbulent mixing. The particular focus is on effects of resolved spectral content and interfacial morphology of initial conditions on transitional and late-time turbulent mixing in the fundamental planar shock-tube configuration.


Author(s):  
T. Z. Du ◽  
Chun-Ho Liu ◽  
Y. B. Zhao

In urban areas, pollutants are emitted from vehicles then disperse from the ground level to the downstream urban canopy layer (UCL) under the effect of the prevailing wind. For a hypothetical urban area in the form of idealized street canyons, the building-height-to-street-width (aspect) ratio (AR) changes the ground roughness which in turn leads to different turbulent airflow features. Turbulence is considered an important factor for the removal of reactive pollutants by means of dispersion/dilution and chemical reactions. Three values of aspect ratio, covering most flow scenarios of urban street canyons, are employed in this study. The pollutant dispersion and reaction are calculated using large-eddy simulation (LES) with chemical reactions. Turbulence timescale and reaction timescale at every single point of the UCL domain are calculated to examine the pollutant removal. The characteristic mechanism of reactive pollutant dispersion over street canyons will be reported in the conference.


2008 ◽  
Vol 65 (7) ◽  
pp. 2437-2447 ◽  
Author(s):  
V. M. Canuto ◽  
Y. Cheng ◽  
A. M. Howard ◽  
I. N. Esau

Abstract A large set of laboratory, direct numerical simulation (DNS), and large eddy simulation (LES) data indicates that in stably stratified flows turbulent mixing exists up to Ri ∼ O(100), meaning that there is practically no Ri(cr). On the other hand, traditional local second-order closure (SOC) models entail a critical Ri(cr) ∼ O(1) above which turbulence ceases to exist and are therefore unable to explain the above data. The authors suggest how to modify the recent SOC model of Cheng et al. to reproduce the above data for arbitrary Ri.


Author(s):  
Ying Huai ◽  
Amsini Sadiki

In this work, Large Eddy Simulation (LES) has been carried out to analyze the turbulent mixing processes in an impinging jet configuration. To characterize and quantify turbulent mixing processes, in terms of scalar structures and degree of mixing, three parameters have been basically introduced. They are “mixedness parameter”, which represents the probability of mixed fluids in computational domain, the Spatial Mixing Deficiency (SMD) and the Temporal Mixing Deficiency (TMD) parameters for characterizing the mixing at different scalar scale degrees. With help of these parameters, a general mixing optimization procedure has then been suggested and achieved in an impinging jet configuration. An optimal jet angle was estimated and the overall mixing degree with this jet angle reached around six times more than the original design. It turns out that the proposed idea and methodology can be helpful for practical engineering design processes.


Sign in / Sign up

Export Citation Format

Share Document