Study of the Liquid Distribution in Layers of Regular Packings with Triangular and Trapezoidal Corrugations

Author(s):  
M. V. Klykov ◽  
T. V. Alushkina ◽  
R. G. Khasanov
Keyword(s):  
Author(s):  
Nan Pan ◽  
Junbin Qian ◽  
Chengjun Zhao

It can divide the atomization effect in the direction of the nozzle axial injection into the jet area and the non-jet area by using the second crushing theory. On this basis, according to the feed liquid atomization particles discrete degree index of characteristics particle size of feed liquid atomization, it divides the injection zone into the atomization area and the diffusion area, so as to realize the axial direction of jet nozzle injection zone, atomization zone and the diffusion zone accurately. Simulation and experiment are used to verify the three zones of atomization nozzle. The division of three zones drives the study from the whole space of liquid distribution in the roller to atomization zone, clears the key zone of the roller in tobacco primary processing, and provides a basis for further work.


2013 ◽  
Vol 773 ◽  
pp. 749-754
Author(s):  
Zhen Ya Duan ◽  
Fu Lin Zheng ◽  
Hui Ling Shi ◽  
Jun Mei Zhang

In this paper, the numerical model of multi-stage liquid column scrubber was established. The flow field of liquid column scrubber with different inlet structure was respectively simulated by a commercial CFD code, Fluent. Considering the distribution characteristics of static pressure and velocity in the scrubber, this inlet type, single horizontal gas inlet with a notch at the bottom, is regarded as the most reasonable structure. On one hand, that structure has uniform distribution of static pressure. On the other hand, the velocity profile of its field presents saddle shape, i.e. the low central velocity exists between two peaks, which could contribute to weakening wall-flow phenomenon and obtaining uniform gas-liquid distribution.


2011 ◽  
Vol 66 (4) ◽  
pp. 624-631 ◽  
Author(s):  
A. Charvet ◽  
S. Rolland Du Roscoat ◽  
M. Peralba ◽  
J.F. Bloch ◽  
Y. Gonthier

2021 ◽  
Author(s):  
Ronald E. Vieira ◽  
Thiana A. Sedrez ◽  
Siamack A. Shirazi ◽  
Gabriel Silva

Abstract Air-water two-phase flow in circular pipes has been studied by many investigators. However, investigations of multiphase flow in non-circular pipes are still very rare. Triangular pipes have found a number of applications, such as multiphase flow conditioning, erosion mitigation in elbows, compact heat exchanges, solar heat collectors, and electronic cooling systems. This work presents a survey of air-water and air-water-sand flow through circular and triangular pipes. The main objective of this investigation is to study the potential effects of triangular pipe geometry on flow patterns, slug frequency, sand erosion in elbows, and heat transfer in multiphase flow. Firstly, twenty-three experiments were performed for horizontal air-water flow. Detailed videos and slug frequency measurements were collected through circular and triangular clear pipes to identify flow patterns and create a database for these pipe configurations. The effect of corners of the triangular pipe on the liquid distribution was investigated using two different orientations of triangular pipe: apex upward and downward and results of triangular pipes were compared to round tubes. Secondly, ultrasonic wall thickness erosion measurements, paint removal studies, and CFD simulations were carried out to investigate the erosion patterns and magnitudes for liquid-sand and liquid-gas-sand flows in circular and triangular elbows with the same radius of curvature and cross-sectional area. Thirdly, heat transfer rates for liquid flows were also simulated for both circular and triangular pipe cross-sections. Although similar flow patterns are observed in circular and triangular pipe configurations, the orientation of the triangular pipes seems to have an effect on the liquid distribution and slug frequency. For higher liquid rates, slug frequencies are consistently lower in the triangular pipe as compared to the circular pipe. Similarly, the triangular elbow offers better flow behavior as compared to circular elbows when investigated numerically with similar flow rates for erosion patterns for both liquid-sand flow and liquid-gas-sand flows. Experimental and CFD results show that erosion in the circular elbow is about three times larger than in the triangular elbow. Paint studies results validated erosion patterns and their relations with particle impacts. Finally, heat transfer to/from triangular pipes is shown to be more efficient than in circular pipes, making them attractive for compact heat exchangers and heat collectors. This paper represents a novel experimental work and CFD simulations to examine the effects of pipe geometries on multiphase flow in pipes with several practical applications. The present results will help to determine the efficiency of utilizing triangular pipes as compared to circular pipes for several important applications and field operations such as reducing slug frequencies of multiphase flow in pipes, and reducing solid particle erosion of elbows, and also increasing the efficiency of heat exchangers.


2002 ◽  
Vol 80 (4) ◽  
pp. 270-275 ◽  
Author(s):  
K.R. Morison ◽  
R.J. Thorpe
Keyword(s):  

2011 ◽  
Vol 40 (2) ◽  
pp. 302-311
Author(s):  
Binxin Wu ◽  
Ying Chen
Keyword(s):  

2014 ◽  
Vol 908 ◽  
pp. 277-281
Author(s):  
Fei Wu ◽  
Jie Wu ◽  
Mei Jin ◽  
Fang Wang ◽  
Ping Lu

Based on acetone-H2O system, the influence of the gas-liquid distribution inducer on the mass transfer coefficient in the rotating packed bed with the stainless steel packing was investigated. Furthermore, the absorption performance was also obtained under the experimental condition of the rotational speed of 630 rpm, the gas flow rate of 2 m3/h and the liquid flow rate of 100 L/h in the rotating packed bed with different types and different installation ways of the distribution inducer. The experimental results showed that the volumetric mass transfer coefficient Kyα per unit contact length of gas-liquid was increased by 8.6% for the forward-curved fixed blade, by 19.8% for the backward-curved rotor blade and by 33.2% with the combination of the straight radial rotor blade and the backward-curved fixed blade, respectively. Furthermore, when the gas flow rate was 2.5 m3/h, Kyα per unit contact length of gas-liquid was increased by 2.9% for the forward-curved fixed blade, by 25.3% for the backward-curved rotor blade, by 42.7% for the combination of the straight radial rotor blade and the backward-curved fixed blade, respectively. The results indicated that the distribution inducer play an important role on the improvement of the mass transfer coefficient in acetone-H2O system.


2008 ◽  
Vol 139 (3) ◽  
pp. 495-502 ◽  
Author(s):  
H.D. Doan ◽  
J. Wu ◽  
M. Jedari Eyvazi

Sign in / Sign up

Export Citation Format

Share Document