Recyclable and Reusable Pd(OAc)2/XPhos–SO3Na/PEG-400/H2O System for Cyanation of Aryl Chlorides with Potassium Ferrocyanide

2021 ◽  
Author(s):  
Mingzhong Cai ◽  
Rong Liu ◽  
Caifeng Xu ◽  
Bin Huang
2010 ◽  
Vol 139 (1-2) ◽  
pp. 56-60 ◽  
Author(s):  
Junli Zhang ◽  
Xiaorong Chen ◽  
Tongjie Hu ◽  
Yuan Zhang ◽  
Kunling Xu ◽  
...  

Author(s):  
Meka Lingam ◽  
Vobalaboina Venkateswarlu

The low aqueous solubility of celecoxib (CB) and thus its low bioavailability is a problem.    Thus, it is suggested to improve the solubility using cosolvency and solid dispersions techniques. Pure CB has solubility of 6.26±0.23µg/ml in water but increased solubility of CB was observed with increasing concentration of cosolvents like PEG 400, ethanol and propylene glycol. Highest solubility (791.06±15.57mg/ml) was observed with cosolvency technique containing the mixture of composition 10:80:10%v/v of water: PEG 400: ethanol. SDs with different polymers like PVP, PEG were prepared and subjected to physicochemical characterization using Fourier-transform infrared (FTIR) spectroscopy, X-ray diffractometry (XRD), differential scanning calorimetry (DSC), solubility and dissolution studies. These studies reveals that CB exists mainly in amorphous form in prepared solid dispersions of PVP, PEG4000 and PEG6000 further it can also be confirmed by solubility and dissolution rate studies. Solid dispersions of PV5 and PV9 have shown highest saturation solubility and dissolution rate


2020 ◽  
Vol 17 (11) ◽  
pp. 857-863
Author(s):  
Mohammad Ali Nasseri ◽  
Seyyedeh Ameneh Alavi ◽  
Milad Kazemnejadi ◽  
Ali Allahresani

A convenient and efficient chiral CuFe2O4@SiO2-Mn(III) Ch.salen nanocatalyst has been developed for the C-N cross-coupling reactions of aryl halides/ phenylboronic acid with N-heterocyclic compounds in water and/or DMSO under mild conditions. The catalyst could be applied for the N-arylation of a variety of nitrogen-containing heterocycles with aryl chlorides, bromides, iodides and phenylboronic acid under mild conditions. Moderate to good yields were achieved for all substrates. The structure of catalyst was characterized using various techniques including FT-IR, FE-SEM, EDX, XRD, TEM and TGA. The catalyst can be simply recovered and reused for several times without significant loss of activity.


2015 ◽  
Vol 12 (3) ◽  
pp. 197-204 ◽  
Author(s):  
Prabhakar Rairala ◽  
Bandi Yadagiri ◽  
Rajashaker Bantu ◽  
Vijayacharan Guguloth ◽  
Lingaiah Nagarapu

1990 ◽  
Vol 55 (8) ◽  
pp. 1959-1967 ◽  
Author(s):  
Petr Vaňura ◽  
Pavel Selucký

The extraction of polyethylene glycol of average molecular mass 400 (PEG 400) with dicarbolide solution in nitrobenzene and of longer-chain polyethylene glycol, of average molecular mass 1 500 (PEG 1 500), with chlorinated dicarbolide solution in nitrobenzene was studied. During the extraction of PEG 400, the polyethylene glycol solvates the Horg+ ion in the organic phase giving rise to the HLorg+ species (L is polyethylene glycol). The obtained value of the extraction constant Kex(HLorg+) = 933 is consistent with published data of metal extraction. Extraction of PEG 1 500 was treated applying the simplified assumption that the thermodynamic behaviour of PEG 1 500 is the same as that of n molecules of polyethylene glycol with relative molecular mass 1 500/n, each solvating one cation. For this model, the value of n = 3.2 ± 1.1 and the values of the extraction constants of the HL1/n,org+ and HL2/n,org+ species were obtained by using the adapted program LETAGROP. This value of n is consistent with published extraction data in the presence of polyethylene glycol with a relative molecular mass from 200 to 1 000.


Sign in / Sign up

Export Citation Format

Share Document