IL-17 Stimulates Migration of Carotid Artery Vascular Smooth Muscle Cells in an MMP-9 Dependent Manner via p38 MAPK and ERK1/2-Dependent NF-κB and AP-1 Activation

2009 ◽  
Vol 29 (8) ◽  
pp. 1161-1168 ◽  
Author(s):  
Gao Cheng ◽  
Liu Wei ◽  
Wang Xiurong ◽  
Liu Xiangzhen ◽  
Zhao Shiguang ◽  
...  
2002 ◽  
Vol 282 (2) ◽  
pp. C330-C337 ◽  
Author(s):  
Yoshifumi Kawanabe ◽  
Nobuo Hashimoto ◽  
Tomoh Masaki

Endothelin (ET)-1 activates two types of Ca2+-permeable nonselective cation channels (NSCC-1 and NSCC-2) and a store-operated Ca2+ channel (SOCC) in rabbit internal carotid artery (ICA) vascular smooth muscle cells (VSMCs) in addition to the voltage-operated Ca2+channel (VOCC). These channels can be discriminated using the Ca2+ channel blockers SK&F-96365 and LOE-908. SK&F-96365 is sensitive to NSCC-2 and SOCC, and LOE-908 is sensitive to NSCC-1 and NSCC-2. On the basis of sensitivity to nifedipine, a specific blocker of the L-type VOCC, VOCCs have a minor role in ET-1-induced mitogenesis. Both LOE-908 and SK&F-96365 inhibited ET-1-induced mitogenesis in a concentration-dependent manner, and the combination of LOE-908 and SK&F-96365 abolished it. The IC50 values of these blockers for ET-1-induced mitogenesis correlated well with those of the ET-1-induced intracellular free Ca2+concentration responses. These results indicate that the inhibitory action of these blockers on ET-1-induced mitogenesis may be mediated by blockade of NSCC-1, NSCC-2, and SOCC. Collectively, extracellular Ca2+ influx through NSCC-1, NSCC-2, and SOCC may be essential for ET-1-induced mitogenesis in ICA VSMCs.


1991 ◽  
Vol 260 (5) ◽  
pp. H1713-H1717 ◽  
Author(s):  
U. Ikeda ◽  
M. Ikeda ◽  
T. Oohara ◽  
A. Oguchi ◽  
T. Kamitani ◽  
...  

We have investigated the effect of interleukin 6 (IL-6) on the growth of vascular smooth muscle cells (VSMC) isolated from rat aortas. Murine recombinant IL-6 significantly increased the number of VSMC and stimulated tritiated thymidine incorporation into VSMC in a dose-dependent manner. The IL-6-induced thymidine incorporation into VSMC was totally inhibited by the Ca2+ channel blocker verapamil; however, IL-6 showed no effects on the intracellular Ca2+ level ([Ca2+]i) in VSMC. Antibody against platelet-derived growth factor (PDGF) also totally inhibited the IL-6-induced thymidine uptake. PDGF caused a significant increase in the [Ca2+]i, which was totally inhibited by verapamil. IL-6 mRNA was not detected in unstimulated “quiescent” VSMC, but its expression was stimulated by exposure of VSMC to 10% fetal bovine serum. Immunohistochemical study using anti-PDGF antibody showed that IL-6 stimulated PDGF production in VSMC. These results support the premise that IL-6 is released by VSMC in an autocrine manner and promotes the growth of VSMC via induction of endogenous PDGF production.


2010 ◽  
Vol 45 (2) ◽  
pp. 87-97 ◽  
Author(s):  
Ping Jiang ◽  
Jinwen Xu ◽  
Shuhui Zheng ◽  
Jinghe Huang ◽  
Qiuling Xiang ◽  
...  

Atherosclerosis is an inflammatory disease where lipopolysaccharide (LPS) triggers the release of inflammatory cytokines that accelerate its initiation and progression. Estrogen has been proven to be vasoprotective against atherosclerosis; however, the anti-inflammatory function of estrogen in the vascular system remains obscure. In this study, we investigated the effect of estrogen on LPS-induced monocyte chemoattractant protein-1 (MCP-1; listed as CCL2 in the MGI database) production in vascular smooth muscle cells (VSMCs). LPS significantly enhances MCP-1 production and this is dependent on nuclear factor κ B (NFκB) signaling, since the use of NFκB inhibitor pyrrolidine dithiocarbamate or the silencing of NFκB subunit p65 expression with specific siRNA largely impairs LPS-enhanced MCP-1 production. On the contrary, 17β-estradiol (E2) inhibits LPS-induced MCP-1 production in a time- and dose-dependent manner, which is related to the suppression of p65 translocation to nucleus. Furthermore, p38 MAPK is rapidly activated in response to LPS, while E2 markedly inhibits p38 MAPK activation. Transfection with p38 MAPK siRNA or the use of p38 MAPK inhibitor SB203580 markedly attenuates LPS-stimulated p65 translocation to nucleus and MCP-1 production, suggesting that E2 suppresses NFκB signaling by the inactivation of p38 MAPK signaling. LPS promotes VSMCs migration and this is abrogated by MCP-1 antibody, implying that MCP-1 may play a major role as an autocrine factor in atherosclerosis. In addition, E2 inhibits LPS-promoted cell migration by downregulation of MCP-1 production. Overall, our results demonstrate that E2 exerts anti-inflammatory property antagonistic to LPS in VSMCs by reducing MCP-1 production, and this effect is related to the inhibition of p38 MAPK/NFκB cascade.


1997 ◽  
Vol 273 (2) ◽  
pp. H628-H633 ◽  
Author(s):  
J. W. Gu ◽  
T. H. Adair

We determined whether hypoxia-induced expression of vascular endothelial growth factor (VEGF) can be reversed by a normoxic environment. Dog myocardial vascular smooth muscle cells (MVSMCs) were exposed to hypoxia (1% O2) for 24 h and then returned to normoxia (20% O2). VEGF protein levels increased by more than fivefold after 24 h of hypoxia and returned to baseline within 24 h of the return of the cells to normoxia. Northern blot analysis showed that hypoxia caused a 5.5-fold increase in VEGF mRNA, and, again, the expression was reversed after reinstitution of normoxia. Additional measurements showed that basic fibroblast growth factor and platelet-derived growth factor protein levels were not induced by hypoxia and that hypoxia caused a fourfold decrease in transforming growth factor-beta 1 protein levels. Hypoxia conditioned media from MVSMCs caused human umbilical vein endothelial cells to increase [3H]thymidine incorporation by twofold, an effect that was blocked in a dose-dependent manner by anti-human VEGF antibody. The hypoxia conditioned media had no effect on MVSMC proliferation. These findings suggest that VEGF expression can be bidirectionally controlled by tissue oxygenation, and thus support the hypothesis that VEGF is a physiological regulator of angiogenesis.


2002 ◽  
Vol 283 (6) ◽  
pp. H2671-H2675 ◽  
Author(s):  
Yoshifumi Kawanabe ◽  
Nobuo Hashimoto ◽  
Tomoh Masaki

The purpose of this study was to demonstrate the involvement of Ca2+ influx through voltage-independent Ca2+ channels (VICCs) in endothelin-1 (ET-1)-induced transactivation of epidermal growth factor receptor protein tyrosine kinase (EGFR PTK) using the Ca2+ channel blockers LOE-908 and SK&F-96365 in rabbit internal carotid artery vascular smooth muscle cells. ET-1-induced EGFR PTK transactivation was completely inhibited by AG-1478, which is a specific inhibitor of EGFR PTK. In the absence of extracellular Ca2+, the magnitude of EGFR PTK transactivation was near the basal level. Based on sensitivity to nifedipine, which is a specific blocker of voltage-operated Ca2+ channels (VOCCs), VOCCs have minor roles in EGFR PTK transactivation. In contrast, Ca2+ influx through VICCs plays an important role in EGFR PTK transactivation. Moreover, based on the sensitivity of VICCs to SK&F-96365 and LOE-908, VICCs were shown to consist of two types of Ca2+-permeable nonselective cation channels (NSCCs), which are designated NSCC-1 and NSCC-2, and a store-operated Ca2+ channel. In summary, Ca2+influx through VICCs plays an essential role in ET-1-induced EGFR PTK transactivation in rabbit internal carotid artery vascular smooth muscle cells.


2004 ◽  
Vol 23 (4) ◽  
pp. 233-237 ◽  
Author(s):  
Jialin Su ◽  
Jianfeng Li ◽  
Wenyan Li ◽  
Bella T. Altura ◽  
Burton M. Altura

Cocaine abuse is known to induce many adverse cardiovascular effects, including hypertension, atherosclerosis, and aortic dissection. A major physiological event leading to these pathophysiological actions of cocaine could be apoptosis. This study was designed to investigate if primary cultured rat aortic vascular smooth muscle cells (VSMCs) can undergo apoptosis when treated with cocaine. After treatment with cocaine (10−6 to 10−4 M), morphological analysis of aortic VSMCs using confocal fluoresence microscopy showed that the percentage of apoptotic aortic VSMCs increased after cocaine (10−6 to 10−4 M) treatment for 12, 24, and 48 h. These results demonstrate that aortic VSMCs can undergo rapid apoptosis in response to cocaine in a concentration-dependent manner. Cocaine-induced apoptosis may thus play a major role in cocaine abuse-induced aortic dissection, atherosclerosis, and hypertension.


Sign in / Sign up

Export Citation Format

Share Document