Chemical Constituents of Stellaria dichotoma var. lanceolata and their Anti-Inflammatory Effect on Lipopolysaccharide-Stimulated RAW 264.7 Cells

2021 ◽  
Vol 57 (1) ◽  
pp. 158-162
Author(s):  
Lin Dong ◽  
Xirong Zhou ◽  
Jiahua Ma ◽  
Hao Zhou ◽  
Xueyan Fu
2014 ◽  
Vol 42 (04) ◽  
pp. 891-904 ◽  
Author(s):  
Mi Young Song ◽  
Hyo Won Jung ◽  
Seok Yong Kang ◽  
Kyung-Ho Kim ◽  
Yong-Ki Park

The root bark of Lycium barbarum (Lycii radicis cortex, LRC) is used as a cooling agent for fever and night sweats in East Asian traditional medicine. The inhibitory effect of LRC water extract on inflammation is unknown. In this study, the anti-inflammatory effect of LRC was investigated in lipopolysaccharide (LPS)-stimulated mouse macrophage, RAW 264.7 cells. LRC extract significantly decreased the LPS-induced production of inflammatory mediators, nitric oxide (NO), prostaglandin (PG) E2 and pro-inflammatory cytokines, interleukin (IL)-1β and IL-6 in the cells. In addition, LRC extract inhibited the LPS-induced expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 mRNA and protein, and inflammatory cytokines mRNA in the cells. The action mechanism of LRC underlies the blocking of LPS-mediated p38 and Jun N-terminal kinase (JNK), mitogen-activated protein kinases (MAPKs), and the nuclear factor (NF)-κB signaling pathway. These results indicate that LRC extract inhibits the inflammatory response in activated macrophages by down-regulating the transcription levels of inflammatory mediators and blocking the MAPKs and NF-κB pathway.


Gene ◽  
2018 ◽  
Vol 675 ◽  
pp. 94-101 ◽  
Author(s):  
Lin Dong ◽  
Lei Yin ◽  
Rong Chen ◽  
Yuanbin Zhang ◽  
Shiyao Hua ◽  
...  

2018 ◽  
Vol 19 (7) ◽  
pp. 2027 ◽  
Author(s):  
Jingyu He ◽  
Xianyuan Lu ◽  
Ting Wei ◽  
Yaqian Dong ◽  
Zheng Cai ◽  
...  

Hedyotis diffusa is a folk herb that is used for treating inflammation-related diseases in Asia. Previous studies have found that iridoids in H. diffusa play an important role in its anti-inflammatory activity. This study aimed to investigate the anti-inflammatory effect and potential mechanism of five iridoids (asperuloside (ASP), asperulosidic acid (ASPA), desacetyl asperulosidic acid (DAA), scandoside methyl ester (SME), and E-6-O-p-coumaroyl scandoside methyl ester (CSME)) that are presented in H. diffusa using lipopolysaccharide (LPS)—induced RAW 264.7 cells. ASP and ASPA significantly decreased the production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in parallel with the inhibition of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α, and IL-6 mRNA expression in LPS-induced RAW 264.7 cells. ASP treatment suppressed the phosphorylation of the inhibitors of nuclear factor-kappaB alpha (IκB-α), p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). The inhibitory effect of ASPA was similar to that of ASP, except for p38 phosphorylation. In summary, the anti-inflammatory effects of ASP and ASPA are related to the inhibition of inflammatory cytokines and mediators via suppression of the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways, which provides scientific evidence for the potential application of H. diffusa.


2018 ◽  
Vol 13 (5) ◽  
pp. 1934578X1801300
Author(s):  
You Chul Chung ◽  
Sung-Min Park ◽  
Jin Hwa Kim ◽  
Geun Soo Lee ◽  
Jung No Lee ◽  
...  

The Trifolium pratense L. (red clover), which blossoms, leaves and stems can be used as medicines for treatment of burns, skin diseases, diabetes and other diseases. Recently study shown that pratol (7-hydroxy-4-methoxyflavone), an O-methylated flavone in T. pratense has been evaluated to induce melanogenesis in B16F10 melanoma cells. However, the anti-inflammatory effect of pratol has not been reported. In this study, we investigated the effects of pratol on anti-inflammation. We also studied the mechanism of action of pratol in LPS-stimulated RAW 264.7 cells. The cells were treated with various concentration of pratol (25, 50, or 100 μM) and 25 μM ammonium pyrrolidinedithiocarbamate (APDC) was used as control. The results in LPS-stimulated RAW 264.7 cells showed that pratol significantly reduced nitric oxide (NO) and prostaglandin E2 (PGE2) production without any cytotoxic. In addition, pratol strongly decreased the expression of inducible nitric oxide synthase (iNOS) and cyclooygenase (COX-2). Furthermore, pratol reduced proinflammatory cytokines such as tumour necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6. We also found that pratol strongly inhibited activation of nuclear factor kappa B (NF-κB) by reducing the p65 phosphorylation and protecting inhibitory factor kappa B alpha (IκBα) degradation. The results suggest that, pratol may be used to treat or prevent inflammatory diseases such as dermatitis, arthritis, cardiovascular and cancer.


2016 ◽  
Vol 38 (5) ◽  
pp. 1614-1620 ◽  
Author(s):  
Byoung-Man Kang ◽  
Byoung-Kwan An ◽  
Won-Seok Jung ◽  
Ho-Kyung Jung ◽  
Jung-Hee Cho ◽  
...  

2016 ◽  
Vol 24 (3) ◽  
pp. 228-236 ◽  
Author(s):  
Ji Hun Jang ◽  
◽  
Ho Kyung Jung ◽  
Jae Hyung Ko ◽  
Mi Ok Sim ◽  
...  

KSBB Journal ◽  
2019 ◽  
Vol 34 (2) ◽  
pp. 99-106
Author(s):  
Min-Jin Kim ◽  
You Chul Chung ◽  
Sang Suk Kim ◽  
Chan Kyu Lim ◽  
Kyung Jin Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document