River fish assemblages in relation to environmental factors in the eastern extremity of Europe (Tatarstan Republic, Russia)

2014 ◽  
Vol 98 (5) ◽  
pp. 1277-1293 ◽  
Author(s):  
Oleg Askeyev ◽  
Igor Askeyev ◽  
Arthur Askeyev ◽  
Sergey Monakhov ◽  
Nur Yanybaev
2006 ◽  
Vol 69 (5) ◽  
pp. 1552-1569 ◽  
Author(s):  
R. Morán-López ◽  
E. Da Silva ◽  
J. L. Pérez-Bote ◽  
C. Corbacho Amado

Zootaxa ◽  
2017 ◽  
Vol 4253 (1) ◽  
pp. 1 ◽  
Author(s):  
BRADLEY J. PUSEY ◽  
DAMIEN W. BURROWS ◽  
MARK J. KENNARD ◽  
COLTON N. PERNA ◽  
PETER J. UNMACK ◽  
...  

Northern Australia is biologically diverse and of national and global conservation signicance. Its ancient landscape contains the world’s largest area of savannah ecosystem in good ecological condition and its rivers are largely free-flowing. Agriculture, previously confined largely to open range-land grazing, is set to expand in extent and to focus much more on irrigated cropping and horticulture. Demands on the water resources of the region are thus, inevitably increasing. Reliable information is required to guide and inform development and help plan for a sustainable future for the region which includes healthy rivers that contain diverse fish assemblages. Based on a range of information sources, including the outcomes of recent and extensive new field surveys, this study maps the distribution of the 111 freshwater fishes (excluding elasmobranches) and 42 estuarine vagrants recorded from freshwater habitats of the region. We classify the habitat use and migratory biology of each species. This study provides a comprehensive assessment of the diversity and distribution of fishes of the region within a standardised nomenclatural framework. In addition, we summarise the outcomes of recent phylogeographic and phylogenetic research using molecular technologies to identify where issues of taxonomy may need further scrutiny. The study provides an informed basis for further research on the spatial arrangement of biodiversity and its relationship to environmental factors (e.g. hydrology), conservation planning and phylogentic variation within individual taxa. 


<em>Abstract.</em>—The main channel of the Hudson River is a tidal estuary from its mouth in New York Harbor to Troy, New York, 247 km upstream. It drains about 35,000 km<sup>2</sup> and is an important navigational, commercial, and recreational system. Since the arrival of European settlers over 400 years ago, it has undergone numerous environmental changes. These changes have included channel maintenance by dredging, wholesale dumping of industrial and domestic wastes, scattered in-basin urbanization and shoreline development, deforestation of the watershed and an increase in agriculture, and water removal for commercial, industrial, and agricultural needs. In addition, the biota of the river has supported commercial and recreational harvesting, exotic species have become established, and habitats have become fragmented, replaced, changed in extent, or isolated. The tidal portion of the Hudson River is among the most-studied water bodies on Earth. We use data from surveys conducted in 1936, the 1970s, the 1980s, and the 1990s to examine changes in fish assemblages and from other sources dating back to 1842. The surveys are synoptic but use a variety of gears and techniques and were conducted by different researchers with different study goals. The scale of our assessment is necessarily coarse. Over 200 species of fish are reported from the drainage, including freshwater and diadromous species, estuarine forms, certain life history stages of primarily marine species, and marine strays. The tidal Hudson River fish assemblages have responded to the environmental changes of the last century in several ways. Several important native species appear to be in decline (e.g., rainbow smelt <em>Osmerus mordax </em>and Atlantic tomcod <em>Microgadus tomcod</em>), others, once in decline, have rebounded (e.g., striped bass <em>Morone saxatilis</em>), and populations of some species seem stable (e.g., spottail shiner <em>Notropis hudsonius</em>). No native species is extirpated from the system, and only one, shortnose sturgeon <em>Acipenser brevirostrum</em>, is listed as endangered. The recent establishment of the exotic zebra mussel <em>Dreissena polymorpha </em>may be shifting the fish assemblage away from openwater fishes (e.g., <em>Alosa</em>) and toward species associated with vegetation (e.g., centrarchids). In general, the Hudson River has seen an increase in the number and importance of alien species and a change in dominant species.


2010 ◽  
Vol 67 (11) ◽  
pp. 1755-1767 ◽  
Author(s):  
Klaus B. Huebert ◽  
Su Sponaugle ◽  
Robert K. Cowen

Three seasons of vertically stratified ichthyoplankton sampling at the edge of the Florida Current revealed consistent accumulations of some coral reef fish larvae under taxon-specific environmental conditions. Environmental variability ranging from predictable (seasonal differences in temperature, diel changes in light, and vertical gradients in many variables) to stochastic (changes in wind-driven turbulence and patchiness of zooplankton) was used to model larval distributions. In five taxa, including the commercially important Epinephelini (groupers), relative larval densities were predicted with significant accuracy based entirely on sampling depth. Models yielding these predictions were cross-validated among all seasons, indicating that larval vertical distributions were remarkably unaffected by other environmental factors, while revealing strong behavioral preferences for specific ranges of hydrostatic pressure. Pomacentridae (damselfish) larvae consistently occupied shallower depths at night than during the day, demonstrating diel vertical migrations. At the community level, depth and season were two major factors structuring larval coral reef fish assemblages. Predictable vertical distributions of larvae in the Straits of Florida can facilitate modeling the same taxa elsewhere in the Western Central Atlantic.


PLoS ONE ◽  
2012 ◽  
Vol 7 (2) ◽  
pp. e31374 ◽  
Author(s):  
Benjamin L. Richards ◽  
Ivor D. Williams ◽  
Oliver J. Vetter ◽  
Gareth J. Williams

2018 ◽  
Vol 69 (2) ◽  
pp. 243 ◽  
Author(s):  
N. L. Benone ◽  
R. Ligeiro ◽  
L. Juen ◽  
L. F. A. Montag

Considering the increasing importance of analysing spatial structure in ecological studies, the aims of the present study were to test whether fluvial distances and environmental factors are important drivers of the β-diversity of stream fish assemblages, and whether β-diversity is different in distinct hydrological periods. Specimens were sampled at 33 stream sites in the eastern Amazon. Eight environmental variables were measured at each site and fluvial distances between pairs of stream sites were determined. Environmental variables were the main factors structuring fish assemblages in both periods. However, fluvial distances were important only during the flood period. This can be related to the formation of extensive flood plains in this period, which increases connectivity between streams, breaking habitat isolation and increasing the regional signal for fish species. The higher correlation of β-diversity with environmental variables during the flood period may be related to decreased dispersal limitations and intermediate dispersal. Finally, β-diversity was higher during the flood period, highlighting the importance of the heterogeneity of the flood plain to stream biota. The results of the present study indicate that spatial and environmental factors play complementary roles in structuring fish assemblages in Amazon streams, and that β-diversity was affected by changes in the habitat connectivity experienced in different hydrological periods.


2019 ◽  
Vol 95 (4) ◽  
pp. 1125-1136 ◽  
Author(s):  
Jamile Queiroz‐Sousa ◽  
Sally A. Keith ◽  
Gianmarco S. David ◽  
Heleno Brandão ◽  
André B. Nobile ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document