Food stress, but not experimental exposure to mercury, affects songbird preen oil composition

Ecotoxicology ◽  
2020 ◽  
Vol 29 (3) ◽  
pp. 275-285 ◽  
Author(s):  
L. A. Grieves ◽  
C. L. J. Bottini ◽  
B. A. Branfireun ◽  
M. A. Bernards ◽  
S. A. MacDougall-Shackleton ◽  
...  
2014 ◽  
Vol 40 (9) ◽  
pp. 1025-1038 ◽  
Author(s):  
Elaina M. Tuttle ◽  
Peter J. Sebastian ◽  
Amanda L. Posto ◽  
Helena A. Soini ◽  
Milos V. Novotny ◽  
...  
Keyword(s):  

2021 ◽  
Vol 8 (10) ◽  
Author(s):  
L. A. Grieves ◽  
G. B. Gloor ◽  
M. A. Bernards ◽  
E. A. MacDougall-Shackleton

Pathogen-mediated selection at the major histocompatibility complex (MHC) is thought to promote MHC-based mate choice in vertebrates. Mounting evidence implicates odour in conveying MHC genotype, but the underlying mechanisms remain uncertain. MHC effects on odour may be mediated by odour-producing symbiotic microbes whose community structure is shaped by MHC genotype. In birds, preen oil is a primary source of body odour and similarity at MHC predicts similarity in preen oil composition. Hypothesizing that this relationship is mediated by symbiotic microbes, we characterized MHC genotype, preen gland microbial communities and preen oil chemistry of song sparrows ( Melospiza melodia ). Consistent with the microbial mediation hypothesis, pairwise similarity at MHC predicted similarity in preen gland microbiota. Counter to this hypothesis, overall microbial similarity did not predict chemical similarity of preen oil. However, permutation testing identified a maximally predictive set of microbial taxa that best reflect MHC genotype, and another set of taxa that best predict preen oil chemical composition. The relative strengths of relationships between MHC and microbes, microbes and preen oil, and MHC and preen oil suggest that MHC may affect host odour both directly and indirectly. Thus, birds may assess MHC genotypes based on both host-associated and microbially mediated odours.


Planta Medica ◽  
2009 ◽  
Vol 75 (09) ◽  
Author(s):  
C Grosso ◽  
G Teixeira ◽  
I Gomes ◽  
ES Martins ◽  
JG Barroso ◽  
...  

Planta Medica ◽  
2009 ◽  
Vol 75 (09) ◽  
Author(s):  
AC Aprotosoaie ◽  
V Floria ◽  
A Spac ◽  
A Miron ◽  
M Hancianu ◽  
...  

2020 ◽  
Vol 15 (3) ◽  
pp. 368-377
Author(s):  
Valery Ostrikov ◽  
◽  
Valentin Safonov ◽  
Alla Zabrodskaya ◽  
Konstantin Safonov ◽  
...  

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 492f-493
Author(s):  
Roberto F. Vieira ◽  
James E. Simon ◽  
Peter Goldsbrough ◽  
Antonio Figueira

Essential oils extracted from basil (Ocimum spp.) by steam distillation are used to flavor foods, oral products, in fragrances, and in traditional medicines. The genus Ocimum contains around 30 species native to the tropics and subtropics, with some species naturalized and/or cultivated in temperate areas. Interand intraspecific hybridization have created significant confusion in the botanical systematics of this genus. Taxonomy of basil (O. basilicum) is also complicated by the existence of numerous varieties, cultivars, and chemotypes within the species that do not differ significantly in morphology. In this study we are using RAPD markers and volatile oil composition to characterize the genetic diversity among the most economically important Ocimum species. We hypothesize that the genetic similarity revealed by molecular markers will more accurately reflect the morphological and chemical differences in Ocimum than essential oil composition per se. Preliminary research using five Ocimum species, four undetermined species, and eight varieties of O. basilicum (a total of 19 accessions) generated 107 polymorphic fragments amplified with 19 primers. RAPDs are able to discriminate between Ocimum species, but show a high degree of similarity between O. basilicum varieties. The genetic distance between nine species and among 55 accessions within the species O. americanum, O. basilicum, O. campechianum, O. × citriodorum, O. gratissimum, O. kilimandscharium, O. minimum, O. selloi, and O. tenuiflorum will be analyzed by matrix of similarity and compared to the volatile oil profile. This research will for the first time apply molecular markers to characterize the genetic diversity of Ocimum associate with volatile oil constituent.


Sign in / Sign up

Export Citation Format

Share Document