scholarly journals Tide gauge location and the measurement of global sea level rise

2014 ◽  
Vol 22 (1) ◽  
pp. 179-206 ◽  
Author(s):  
Michael Beenstock ◽  
Daniel Felsenstein ◽  
Eyal Frank ◽  
Yaniv Reingewertz
Author(s):  
Carlos Antunes

Data collected at the Cascais tide gauge, located on the west coast of Portugal Mainland, have been analyzed and sea level rise rates have been updated. Based on a bootstrapping linear regression model and on polynomial adjustments, time series are used to calculate different empirical projections for the 21st century sea level rise, by estimating the initial velocity and its corresponding acceleration. The results are consistent to an accelerated sea level rise, showing evidence of a faster rise than previous century estimates. Based on different numerical methods of second order polynomial fitting, it is possible to build a set of projection models of relative sea level rise. Appling the same methods to regional sea level anomaly from satellite altimetry, additional projections are also built with good consistency. Both data sets, tide gauge and satellite altimetry data, enabled the development of an ensemble of projection models. The relative sea level rise projections are crucial for national coastal planning and management since extreme sea level scenarios can potentially cause erosion and flooding. Based on absolute vertical velocities obtained by integrating global sea level models, neo-tectonic studies and permanent Global Positioning System (GPS) station time series, it is possible to transform relative into absolute sea level rise scenarios, and vice-versa, allowing the generation of absolute sea level rise projection curves and its comparison with already established global projections. The sea level rise observed at the Cascais tide gauge has always shown a significant correlation with global sea level rise observations, evidencing relatively low rates of composed vertical land velocity from tectonic and post-glacial isostatic adjustment, and residual synoptic regional dynamic effects rather than a trend. An ensemble of sea level projection models for the 21st century is proposed with its corresponding probability density function, both for relative and absolute sea level rise for the west coast of Portugal Mainland.


2019 ◽  
Vol 7 (3) ◽  
pp. 61 ◽  
Author(s):  
Carlos Antunes

Based on the updated relative sea level rise rates, 21st-century projections are made for the west coast of Portugal Mainland. The mean sea level from Cascais tide gauge and North Atlantic satellite altimetry data have been analyzed. Through bootstrapping linear regression and polynomial adjustments, mean sea level time series were used to calculate different empirical projections for sea level rise, by estimating the initial velocity and its corresponding acceleration. The results are consistent with an accelerated sea level rise, showing evidence of a faster rise than previous century estimates. Based on different numerical methods of second order polynomial fitting, it is possible to build a set of projection models of relative sea level rise. Applying the same methods to regional sea level anomaly from satellite altimetry, additional projections are also built with good consistency. Both data sets, tide gauge and satellite altimetry data, enabled the development of an ensemble of projection models. The relative sea level rise projections are crucial for national coastal planning and management since extreme sea level scenarios can potentially cause erosion and flooding. Based on absolute vertical velocities obtained by integrating global sea level models, neo-tectonic studies, and permanent Global Positioning System (GPS) station time series, it is possible to transform relative into absolute sea level rise scenarios, and vice-versa, allowing the generation of absolute sea level rise projection curves and its comparison with already established global projections. The sea level rise observed at the Cascais tide gauge has always shown a significant correlation with global sea level rise observations, evidencing relatively low rates of vertical land velocity and residual synoptic regional dynamic effects. An ensemble of sea level projection models for the 21st century is proposed with its corresponding probability density function, both for relative and absolute sea level rise for the west coast of Portugal Mainland. A mean sea level rise of 1.14 m was obtained for the epoch of 2100, with a likely range of 95% of probability between 0.39 m and 1.89 m.


Author(s):  
Hans-Peter Plag

Local sea-level is affected by a number of forcing factors, which all contribute to the trends observed by tide gauges. Here we use the fingerprints of main factors contributing to secular sea-level trends to construct an initial empirical model that explains best the trends in sea-level as recorded by the large number of coastal tide gauges over the last 50 years. The forcing factors considered include steric changes derived from observations, post-glacial rebound as predicted by geophysical models and mass changes in the Greenland and Antarctic ice sheets as predicted by the static sea-level equation. The approximation of the observed spatial pattern of sea-level trends through a model based on the spatial fingerprints of the main forcing factors fully utilizes the information contents of the available observations and models and allows the interpolation of the sea-level trends between the tide gauges. As a result, we obtain the global picture of sea-level trends due to the forcing factors accounted for in the analysis. Moreover, we derive constraints on the mass changes of the large ice sheets. The empirical models explain about 15% of the variance of the sea-level trends. Nevertheless, the models are correlated with the observations on the level of 0.38±0.07, indicating that most of the unexplained variance is due to contributions with small spatial scales. Averaged over the last five decades, the results indicate that the Antarctic and Greenland ice sheets have been melting with an equivalent contribution to global sea-level rise of 0.39±0.11 and 0.10±0.05 mm yr −1 , respectively. The steric signal derived from observations is clearly identified in the sea-level trends and is found to be at a minimum of 0.2 mm yr −1 , with the most likely value being close to 0.35 mm yr −1 . The global tide gauge network, which covers only a small fraction of the ocean surface, appears to sense an average sea-level rise larger than the global average. Extrapolating the regression models to the global ocean and taking into account the uncertainties in the extrapolation results in a most likely global average of the order of 1.05±0.75 mm yr −1 .


2009 ◽  
Vol 22 (21) ◽  
pp. 5772-5781 ◽  
Author(s):  
M. A. Merrifield ◽  
S. T. Merrifield ◽  
G. T. Mitchum

Abstract Tide gauge data are used to estimate trends in global sea level for the period from 1955 to 2007. Linear trends over 15-yr segments are computed for each tide gauge record, averaged over latitude bands, and combined to form an area-weighted global mean trend. The uncertainty of the global trend is specified as a sampling error plus a random vertical land motion component, but land motion corrections do not change the results. The average global sea level trend for the time segments centered on 1962–90 is 1.5 ± 0.5 mm yr−1 (standard error), in agreement with previous estimates of late twentieth-century sea level rise. After 1990, the global trend increases to the most recent rate of 3.2 ± 0.4 mm yr−1, matching estimates obtained from satellite altimetry. The acceleration is distinct from decadal variations in global sea level that have been reported in previous studies. Increased rates in the tropical and southern oceans primarily account for the acceleration. The timing of the global acceleration corresponds to similar sea level trend changes associated with upper ocean heat content and ice melt.


2021 ◽  
Author(s):  
Weiqing Han ◽  
Lei Zhang ◽  
Gerald Meehl ◽  
Shoichiro Kido ◽  
Tomoki Tozuka ◽  
...  

Abstract The low-lying coastal and island regions are vulnerable to sea level rise and extreme events. Compounded by marine heatwaves, sea level extremes have devastating impacts on coastal community and marine ecosystems. As long tide gauge records are sparse, sea level extremes around Indonesia are poorly understood, and the Compound Height-Heat EXtreme (C-HHEX) events remain unexplored. Here we combine in situ and satellite observations with model simulations, to investigate the long-lasting (>1 month) sea level extremes and C-HHEXs along Indonesian coasts of the Indian Ocean since the 1960s. We find that 90% (80%) of the extreme sea level (C-HHEX) events, with a maximum monthly sea level anomaly of 0.45m, are clustered in an 8yr period of 2010-2017, due to anthropogenic global sea level rise and decadal enhancement driven by changing surface winds associated with a combined invigoration of the Indian and Pacific Walker Cells, atmospheric overturning circulations in east-west direction. Remote and local surface wind anomalies associated with negative phases of the Indian Ocean Dipole (IOD) - enhanced by La Niña – drive individual C-HHEX events under a precondition of shallow thermocline (a region of subsurface ocean with temperature decreases rapidly downward). By contrast, winds associated with monsoon and its intraseasonal oscillations force the sea level alone events under a deep thermocline condition. We conclude that the shoaling thermocline in eastern Indian Ocean under anthropogenic warming and global sea level rise favorably precondition the ocean for stronger and more frequent sea level extremes and C-HHEXs, increasing the environmental stress on Indonesia.


2018 ◽  
Vol 9 (1) ◽  
pp. 3-3 ◽  
Author(s):  
Angélique Melet ◽  
Benoît Meyssignac ◽  
Rafaël Almar ◽  
Gonéri Le Cozannet

2013 ◽  
Vol 9 (1) ◽  
pp. 353-366 ◽  
Author(s):  
A. Quiquet ◽  
C. Ritz ◽  
H. J. Punge ◽  
D. Salas y Mélia

Abstract. As pointed out by the forth assessment report of the Intergovernmental Panel on Climate Change, IPCC-AR4 (Meehl et al., 2007), the contribution of the two major ice sheets, Antarctica and Greenland, to global sea level rise, is a subject of key importance for the scientific community. By the end of the next century, a 3–5 °C warming is expected in Greenland. Similar temperatures in this region were reached during the last interglacial (LIG) period, 130–115 ka BP, due to a change in orbital configuration rather than to an anthropogenic forcing. Ice core evidence suggests that the Greenland ice sheet (GIS) survived this warm period, but great uncertainties remain about the total Greenland ice reduction during the LIG. Here we perform long-term simulations of the GIS using an improved ice sheet model. Both the methodologies chosen to reconstruct palaeoclimate and to calibrate the model are strongly based on proxy data. We suggest a relatively low contribution to LIG sea level rise from Greenland melting, ranging from 0.7 to 1.5 m of sea level equivalent, contrasting with previous studies. Our results suggest an important contribution of the Antarctic ice sheet to the LIG highstand.


Sign in / Sign up

Export Citation Format

Share Document