scholarly journals Potential toxic elements in stream sediments, soils and waters in an abandoned radium mine (central Portugal)

2017 ◽  
Vol 40 (1) ◽  
pp. 521-542 ◽  
Author(s):  
I. M. H. R. Antunes ◽  
A. M. R. Neiva ◽  
M. T. D. Albuquerque ◽  
P. C. S. Carvalho ◽  
A. C. T. Santos ◽  
...  
2018 ◽  
Vol 40 (6) ◽  
pp. 2573-2585 ◽  
Author(s):  
I. M. H. R. Antunes ◽  
M. T. D. Albuquerque ◽  
N. Roque

2020 ◽  
Vol 10 (21) ◽  
pp. 7866
Author(s):  
Margarida Antunes ◽  
António Santos ◽  
Teresa Valente ◽  
Teresa Albuquerque

Uranium and thorium are toxic in different environments. The exploitation of uranium mines and associated mine drainage leaching towards streams, sediments, and soils cause relevant pollution. The U-mine areas present high concentrations of potentially toxic elements with several consequences to ecosystems and human health. Physicochemical and potentially toxic elements of mine dumps, stream sediments, and soils from the Canto Lagar uranium mine area (Central Portugal) were analyzed. Stream sediments, soils, and mine dumps show a large range in the concentration values of Fe, U, As, Cu, Zn, Pb, and Th, suggesting geological and mine contributions. Most of the selected potential toxic elements from sediments present a low to moderate contamination degree, except for As, W, and U, which vary between high and very high contamination index. The soils must not be used in agricultural or residential activities due to contamination in As and U. This abandoned mine represents an environmental risk due to the spatial mobility and dispersion of potentially toxic elements from the dumps to the sediments and soils, as well as by surface runoff and wind.


Sci ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 46
Author(s):  
Guri Venvik ◽  
Floris C. Boogaard

Sustainable urban drainage systems (SuDS) such as swales are designed to collect, store and infiltrate a large amount of surface runoff water during heavy rainfall. Stormwater is known to transport pollutants, such as particle-bound Potential Toxic Elements (PTE), which are known to often accumulate in the topsoil. A portable XRF instrument (pXRF) is used to provide in situ spatial characterization of soil pollutants, specifically lead (Pb), zink (Zn) and copper (Cu). The method uses pXRF measurements of PTE along profiles with set intervals (1 meter) to cover the swale with cross-sections, across the inlet, the deepest point and the outlet. Soil samples are collected, and the In-Situ measurements are verified by the results from laboratory analyses. Stormwater is here shown to be the transporting media for the pollutants, so it is of importance to investigate areas most prone to flooding and infiltration. This quick scan method is time and cost-efficient, easy to execute and the results are comparable to any known (inter)national threshold criteria for polluted soils. The results are of great importance for all stakeholders in cities that are involved in climate adaptation and implementing green infrastructure in urban areas. However, too little is still known about the long-term functioning of the soil-based SuDS facilities.


2021 ◽  
Vol 121 ◽  
pp. 107038
Author(s):  
Michael Martínez-Colón ◽  
Henry Alegría ◽  
Ashley Huber ◽  
Hatice Kubra-Gul ◽  
Perihan Kurt-Karakus

2019 ◽  
Vol 98 ◽  
pp. 01014
Author(s):  
Oleg Eremin ◽  
Olga Rusal ◽  
Maria Solodukhina ◽  
Ekaterina Epova ◽  
Georgy Yurgenson

The potential toxic elements (Be, U, As, Cd, Pb, Sb, Bi) were detected for mine landscape of Sherlovaya Gora tin-polymetallic deposit. Thermodynamic calculation of equilibrium for tailings dump pond water was carried out by means of “Selektor” program complex based on Gibbs free energy minimization algorithm at 25°C and 1 bar total pressure. It turned out that the mine water is supersaturated with respect to many sulphates of Ca, Mg, Sr, Zn, K, Cu, Ni, Cd, Be, Al, Ce and Y, fluorides of (Ln and Y, Sc), and Y phosphate.


Sign in / Sign up

Export Citation Format

Share Document