scholarly journals Bioaccumulation and biomagnification of potential toxic elements (PTEs): An Avicennia germinans–Uca rapax trophic transfer story from Jobos Bay, Puerto Rico

2021 ◽  
Vol 121 ◽  
pp. 107038
Author(s):  
Michael Martínez-Colón ◽  
Henry Alegría ◽  
Ashley Huber ◽  
Hatice Kubra-Gul ◽  
Perihan Kurt-Karakus
Sci ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 46
Author(s):  
Guri Venvik ◽  
Floris C. Boogaard

Sustainable urban drainage systems (SuDS) such as swales are designed to collect, store and infiltrate a large amount of surface runoff water during heavy rainfall. Stormwater is known to transport pollutants, such as particle-bound Potential Toxic Elements (PTE), which are known to often accumulate in the topsoil. A portable XRF instrument (pXRF) is used to provide in situ spatial characterization of soil pollutants, specifically lead (Pb), zink (Zn) and copper (Cu). The method uses pXRF measurements of PTE along profiles with set intervals (1 meter) to cover the swale with cross-sections, across the inlet, the deepest point and the outlet. Soil samples are collected, and the In-Situ measurements are verified by the results from laboratory analyses. Stormwater is here shown to be the transporting media for the pollutants, so it is of importance to investigate areas most prone to flooding and infiltration. This quick scan method is time and cost-efficient, easy to execute and the results are comparable to any known (inter)national threshold criteria for polluted soils. The results are of great importance for all stakeholders in cities that are involved in climate adaptation and implementing green infrastructure in urban areas. However, too little is still known about the long-term functioning of the soil-based SuDS facilities.


2019 ◽  
Vol 98 ◽  
pp. 01014
Author(s):  
Oleg Eremin ◽  
Olga Rusal ◽  
Maria Solodukhina ◽  
Ekaterina Epova ◽  
Georgy Yurgenson

The potential toxic elements (Be, U, As, Cd, Pb, Sb, Bi) were detected for mine landscape of Sherlovaya Gora tin-polymetallic deposit. Thermodynamic calculation of equilibrium for tailings dump pond water was carried out by means of “Selektor” program complex based on Gibbs free energy minimization algorithm at 25°C and 1 bar total pressure. It turned out that the mine water is supersaturated with respect to many sulphates of Ca, Mg, Sr, Zn, K, Cu, Ni, Cd, Be, Al, Ce and Y, fluorides of (Ln and Y, Sc), and Y phosphate.


2020 ◽  
Vol 266 ◽  
pp. 115205
Author(s):  
Zhongkang Yang ◽  
Linxi Yuan ◽  
Zhouqing Xie ◽  
Jun Wang ◽  
Zhaolei Li ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1847 ◽  
Author(s):  
Jiankang Wang ◽  
Bo Gao ◽  
Shuhua Yin ◽  
Laisheng Liu ◽  
Dongyu Xu ◽  
...  

This study investigated the concentrations and spatial distributions, ecological risks, and potential pollution sources of potential toxic elements (PTEs) in the soils and sediments collected from the Guishui River (GSR) in Beijing, China. Multiple methods for pollution assessment and source identification of PTEs in the sediments/soils were used, including analysis of the physicochemical properties, Geo-accumulation index (Igeo), potential ecological risk index (RI), Pearson correlation, principal component analysis (PCA), and Pb isotopic ratio analysis. The results showed that PTE concentrations in the sediments/soils were similar to the soil background values (BV) of Beijing, except for Cd. Maximum Cd concentrations in soils were far below the guideline of the Environmental Quality Standard for Soils in China. PTE concentrations in the soils were slightly higher than those in the sediments. Upstream to downstream of GSR, PTEs concentrations in the soils and sediments remained stable. Pollution assessment based on Igeo and RI indicated that Cd was the main contaminant with moderate pollution levels. PCA results showed that Cd originated from anthropogenic sources, mainly including pesticide and fertilizer residues, while other metals mainly originated from natural sources. Further source identification using Pb isotopic ratios and PCA indicated that Cu, Pb, and Zn in GSR originated from anthropogenic sources (aerosols and coal combustion) and atmospheric deposition was considered as the primary input pathway.


Sign in / Sign up

Export Citation Format

Share Document