Estimation of indoor air pollutant during photocopy/printing operation: a computational fluid dynamics (CFD)-based study

2020 ◽  
Vol 42 (11) ◽  
pp. 3543-3573
Author(s):  
Abhishek Nandan ◽  
Nihal Anwar Siddiqui ◽  
Pankaj Kumar
2013 ◽  
Vol 368-370 ◽  
pp. 599-602 ◽  
Author(s):  
Ian Hung ◽  
Hsien Te Lin ◽  
Yu Chung Wang

This study focuses on the performance of air conditioning design at the Dazhi Cultural Center and uses a computational fluid dynamics (CFD) simulation to discuss the differences in wind velocity and ambient indoor temperature between all-zone air conditioning design and stratified air conditioning design. The results have strong implications for air conditioning design and can improve the indoor air quality of assembly halls.


2021 ◽  
Vol 15 (2) ◽  
pp. 244-255
Author(s):  
Ayoola Jongbo ◽  
Adekunle T. Atta ◽  
Ian Moorcroft

Fast-growing broiler chickens, bred for meat, find it difficult to adapt to warm conditions during hot weather periods in an enclosed environment. They tend to change their behavioural and physiological mechanisms to survive. This study was carried out to evaluate the air velocity distributions within a sidewall inlet and roof exhaust ventilated broiler shed using computational fluid dynamics (CFD). The simulation was conducted using three turbulence models (standard, realizable, and SST ) to determine the best predictive model for the hot weather ventilation of the broiler shed under consideration. The results predicted by the turbulence models were validated with the field experimental results. It was discovered that the standard turbulence model predicted air velocity distributions, close to that of the air velocity distributions obtained during the experimental study except at the centre of the broiler shed where the CFD predicted higher air velocity. This shows that CFD could be adopted by Agricultural Engineers to create appropriate environments for animals before the structures are physically erected.


2021 ◽  
Vol 48 (1) ◽  
pp. 29-36
Author(s):  
Kevin Yonathan Tanumidjaja ◽  
Danny Santoso Mintorogo ◽  
Rully Damayanti

The use of split-type air conditioner in Surabaya results in the almost universal typical apartment layouts which feature a recessed balcony upon the building’s exterior façade which then utilized as air-conditioner condenser unit storage. Façade geometry with recessed balcony itself carries its own characteristic of surface air movement which affects the general Indoor Air Quality (IAQ) and heat dissipation of a building. Nevertheless, façade as architectural elements greatly influence building’s energy performance. Inefficiencies in heat dissipation from a condenser unit is detrimental on its performance and precipitate energy wastage. Based on computational fluid dynamics (CFD) analysis incorporated with energy performance evaluation, the effectiveness of façade geometry with recessed balcony is explored in this paper. It was found that recessed balconies are not an ideal place for condenser unit placement on a façade where many factors contributed to promoting heat re-entry from condenser units into the building’s interior.


Author(s):  
Ayman A. Shaaban ◽  
Samy M. Morcos ◽  
Essam Eldin Khalil ◽  
Mahmoud A. Fouad

Indoor air quality inside chemical laboratories subjected to gaseous contaminants was investigated numerically throughout the current research using Ansys Fluent 13. The lab is 4.8 m (L) * 4.3 m (W) * 2.73 m (H). The model was built and mesh was generated using Gambit 2.2.30 yielding around 1.4 million cells. To ensure the reliability of the Computational Fluid Dynamics (CFD) model validation was done against experimental data of three cases done by Jin et al. [1]. The model could simulate accurately contaminant mole fraction to the order of 10 Indoor air quality inside chemical laboratories subjected to gaseous contaminants was investigated numerically throughout the current research using Ansys Fluent 13. The lab is 4.8 m (L) * 4.3 m (W) * 2.73 m (H). The model was built and mesh was generated using Gambit 2.2.30 yielding around 1.4 million cells. To ensure the reliability of the Computational Fluid Dynamics (CFD) model validation was done against experimental data of three cases done by Jin et al. [1]. The model could simulate accurately contaminant mole fraction to the order of 10.


Sign in / Sign up

Export Citation Format

Share Document