Effect of six sanitation treatments on leaf litter density, ascospore production of Venturia inaequalis and scab incidence in integrated and organic apple orchards

2006 ◽  
Vol 115 (3) ◽  
pp. 293-307 ◽  
Author(s):  
Imre J. Holb
Plant Disease ◽  
2019 ◽  
Vol 103 (3) ◽  
pp. 531-537 ◽  
Author(s):  
Janna Beckerman ◽  
Chelsi Abbott

A 2-year study on the use of organic and conventional adjuvants alone, or mixed with urea, was conducted for management of overwintering inoculum of the apple scab pathogen, Venturia inaequalis. Select adjuvants (LI 700, Bond Max, Latron B-1956, and Organic Wet Betty [OWB]) have the potential to hasten urea-driven leaf litter decomposition and reduce V. inaequalis overwintering inoculum comparable to urea, and that one organic surfactant could perform the same level of leaf decomposition as urea. Combinations of adjuvants with urea significantly improved leaf litter degradation compared with urea alone, concomitant with reducing the number of pseudothecia present and pseudothecium fertility. We demonstrate that the combination of urea with Bond Max or OWB reduced pseudothecia fertility and ascospore production to less than 5% in the remaining pseudothecia, a significantly greater reduction than with urea alone. These results suggest that conventional growers combine urea with Bond Max or OWB to more effectively reduce overwintering inoculum, and that the adjuvant OWB can provide organic growers with comparable performance to urea used in conventional orchards for improved sanitation.


2002 ◽  
Vol 55 ◽  
pp. 121-124
Author(s):  
I.J. Horner ◽  
M.B. Horner

Ascospore production from pseudothecia in apple leaf litter in the spring is a critical step in the disease cycle of Venturia inaequalis Leaf litter management is potentially an important component of an integrated pest and disease management strategy An orchard study was carried out in Hawkes Bay to investigate the relationships between the incidence of black spot on leaves in autumn the density of apple leaf litter on the orchard floor in spring and the number of ascospores produced in spring A total of 22 blocks on eight orchards were surveyed for black spot incidence in autumn 2000 The following spring remaining leaf litter was measured and ascospore production was quantified using spore traps Autumn black spot levels and spring litter levels were accurate predictors of spring ascospore production Management strategies employed on different blocks influenced spring leaf litter and ascospore levels Blocks with high autumn black spot generally had high spring ascospore production Management practices that substantially reduced litter levels resulted in reduced V inaequalis inoculum


2004 ◽  
Vol 94 (12) ◽  
pp. 1305-1314 ◽  
Author(s):  
O. Carisse ◽  
D. Rolland

Field and in vitro trials were conducted to establish the influence of the biological control agent Microsphaeropsis ochracea on the ejection pattern of ascospores by Venturia inaequalis and on apple scab development, and to establish the best timing of application. The ejection pattern of ascospores was similar on leaves sprayed with M. ochracea and on untreated leaves. Fall application of M. ochracea combined with a delayed-fungicide program was evaluated in orchards with intermediate and high scab risk. For both orchards, it was possible to delay the first three and two infection periods in 1998 and 1999, respectively, without causing significant increase or unacceptable leaf and fruit scab incidence. To evaluate the best timing of application, sterile leaf disks were inoculated with V. inaequalis and then with M. ochracea 0, 2, 4, 6, 8, 10, 12, 14, and 16 weeks later. After incubation under optimal conditions for pseudothecia development, the number of ascospores was counted. Similarly, M. ochracea was sprayed on scabbed leaves on seven occasions from August to November 1999 and 2000. Leaves were overwintered on the orchard floor and ascospore production was evaluated the following spring. Ascospore production was reduced by 97 to 100% on leaf disks inoculated with M. ochracea less than 6 weeks after inoculation with V. inaequalis, but ascospore production increased with increasing period of time when M. ochracea was applied 8 to 16 weeks after the inoculation with V. inaequalis. In the orchard, the greatest reduction in production of ascospores (94 to 96% in 2000 and 99% in 2001) occurred on leaves sprayed with M. ochracea in August. The production of ascospores was reduced by 61 to 84% in 2000 and 93% in 2001 on leaves sprayed with M. ochracea in September, reduced by 64 to 86% in 2000 and 74 to 89% in 2001 on leaves sprayed in October, and reduced by 54 and 67% in 2000 and 2001, respectively, on leaves sprayed in November. It was concluded that M. ochracea should be applied in August or September and that ascospore maturation models and delayed-fungicide program could be used in orchards treated with this biological control agent.


2003 ◽  
Vol 56 ◽  
pp. 95-99
Author(s):  
K. Tshomo ◽  
I.J. Horner ◽  
M. Walter ◽  
A. Stewart ◽  
M.V. Jaspers

Field trials were conducted in Hawkes Bay and Lincoln into methods of treating overwintering apple leaves to reduce ascospore production by the apple black spot pathogen Venturia inaequalis The leaf treatments comprised three levels of nutrient amendments (including a water control) and five levels of saprophytic fungal isolates (including a nofungus control) in a factorial design Leaves were left to overwinter on the orchard floor and in spring the V inaequalis ascospores released were trapped on glass slides and counted Ascospore numbers were reduced (Plt;005) by the leaf amendment urea which alone caused 73 reduction but not by the BioStarttrade; product The effect of fungal isolates was not significant (P012) although when combined with the water treatment the isolates Chaetomium Phoma and Epicoccum spp and Trametes versicolor reduced numbers of ascospores by 33 27 15 and 28 respectively compared to the nofungus control When combined with urea the Chaetomium isolate reduced ascospore numbers by 92 and 82 compared to the nil fungus/water control treatments in Hawkes Bay and Lincoln respectively indicating that this treatment has potential for reducing primary inoculum of apple black spot


Plant Disease ◽  
2017 ◽  
Vol 101 (3) ◽  
pp. 414-420 ◽  
Author(s):  
Franziska M. Porsche ◽  
Barbara Pfeiffer ◽  
Andreas Kollar

Ascospores of Venturia inaequalis, released from pseudothecia in overwintered, infected apple leaves, serve as the primary inoculum for apple scab. In this study, we tested a new sanitation strategy to reduce ascospore inoculum under orchard conditions over three overwintering periods. After leaf fall, nutrient media containing different concentrations of degraded casein or a yeast extract from Saccharomyces cerivisiae were applied to leaf litter infected with apple scab. The application of 30 and 60% yeast extract showed the greatest efficacy, and significantly reduced ascospore discharge by 99% (P < 0.01) in 2013 and 2014. The efficacy of the treatments did not differ from treatment with 5% urea (P > 0.05). Leaf litter decay was accelerated in the plots treated with yeast extract compared with untreated control plots. Moreover, apple leaves treated with yeast extract had completely decayed due to earthworm activity before ascospore maturity. In comparison, up to 26% of the leaves in untreated control plots had not decayed. These results suggest that the treatment of leaf litter with yeast extract can almost completely eliminate apple scab inoculum in the course of the whole primary season. These sanitation practices may be beneficial for both organic and conventional cultivation. The reduced infection pressure may allow growers the usage of fungicides with lower efficacy or to reduce the number of applications needed to manage apple scab in spring.


2007 ◽  
Vol 8 (1) ◽  
pp. 3 ◽  
Author(s):  
Sasha C. Marine ◽  
David G. Schmale ◽  
Keith S. Yoder

Sterol-inhibiting (SI) fungicides are widely used to manage apple scab, caused by Venturia inaequalis. However, recent observations indicate that populations of V. inaequalis in orchards in Virginia have developed resistance to myclobutanil and other SI fungicides. Little is known about the frequency and distribution of fungicide resistance in apple scab populations in Virginia. Isolates of V. inaequalis were collected from three different apple orchards in Winchester, VA in 2006. Orchards were treated with myclobutanil on 12 April, 19 April, 1 May, 30 May, and 7 July. The sensitivity of 87 single-spored isolates of V. inaequalis to myclobutanil was determined by monitoring their growth on agar dishes amended with 0, 0.1, 0.5, or 1.0 μg/ml myclobutanil. A relative continuum of fungicide resistance was observed: 16 isolates were resistant, 40 isolates were moderately resistant, and 31 isolates were sensitive to myclobutanil. After 28 days, the mean growth of isolates collected from trees treated with myclobutanil was significantly greater than that of isolates collected from non-treated trees at all concentrations of myclobutanil tested in vitro. High levels of fungicide resistance found in populations of V. inaequalis suggest that replacement programs may need to be developed to manage apple scab in Virginia. Accepted for publication 4 September 2007. Published 13 November 2007.


1986 ◽  
Vol 118 (11) ◽  
pp. 1131-1142 ◽  
Author(s):  
N.J. Bostanian ◽  
L.J. Coulombe

AbstractAn IPM program was developed to control Venturia inaequalis (Cke.) Wint., Lygus lineolaris (Palisot de Beaiivois), Conotrachelus nenuphar (Herbst), and Rhagoletis pomonella (Walsh), the annual key pests of apple orchards in southwestern Quebec. The program was found to control other pests, such as Orthosia hibisci (Guenée). Phytophagous tetranychids were controlled with the introduction of an organophosphate-resistant strain of Amblyseius fallacis Garman, Key pests were monitored carefully and pesticide applications were timed to correspond to their presence in the orchard. After an extremely severe winter and late spring frosts, the IPM program failed to provide commercially acceptable pest control. A measure to correct this problem is suggested in the text. This program reduced the cost of pesticide treatments by 34% when compared with pest control practices currently used by commercial growers in Quebec.


1981 ◽  
Vol 59 (6) ◽  
pp. 965-968
Author(s):  
C. C. Heye ◽  
J. H. Andrews ◽  
E. V. Nordheim

The standard water bubbler and a modified tower aspirator for quantifying ascospore productivity were compared. Samples, each consisting of 50 discs, were cut randomly from scab-infected McIntosh apple leaf litter in the spring and 18 samples were processed by each method. The square roots of hemocytometer counts adjusted for unit area or gram dry weight of leaf samples were found to be normally distributed. More spores were harvested from the same amount of leaf material with the bubbler than with the tower. The coefficient of variation for spore yields expressed on a per area or a per gram dry weight basis was smaller for the tower method than for the bubbler, although the values were not significantly different. Where detection of low ascospore productivity is not essential, the tower method is preferable in terms of ease, speed of operation, and the potential for electronic enumeration of harvested ascospores.


Sign in / Sign up

Export Citation Format

Share Document