scholarly journals Effect of Timing of Application of the Biological Control Agent Microsphaeropsis ochracea on the Production and Ejection Pattern of Ascospores by Venturia inaequalis

2004 ◽  
Vol 94 (12) ◽  
pp. 1305-1314 ◽  
Author(s):  
O. Carisse ◽  
D. Rolland

Field and in vitro trials were conducted to establish the influence of the biological control agent Microsphaeropsis ochracea on the ejection pattern of ascospores by Venturia inaequalis and on apple scab development, and to establish the best timing of application. The ejection pattern of ascospores was similar on leaves sprayed with M. ochracea and on untreated leaves. Fall application of M. ochracea combined with a delayed-fungicide program was evaluated in orchards with intermediate and high scab risk. For both orchards, it was possible to delay the first three and two infection periods in 1998 and 1999, respectively, without causing significant increase or unacceptable leaf and fruit scab incidence. To evaluate the best timing of application, sterile leaf disks were inoculated with V. inaequalis and then with M. ochracea 0, 2, 4, 6, 8, 10, 12, 14, and 16 weeks later. After incubation under optimal conditions for pseudothecia development, the number of ascospores was counted. Similarly, M. ochracea was sprayed on scabbed leaves on seven occasions from August to November 1999 and 2000. Leaves were overwintered on the orchard floor and ascospore production was evaluated the following spring. Ascospore production was reduced by 97 to 100% on leaf disks inoculated with M. ochracea less than 6 weeks after inoculation with V. inaequalis, but ascospore production increased with increasing period of time when M. ochracea was applied 8 to 16 weeks after the inoculation with V. inaequalis. In the orchard, the greatest reduction in production of ascospores (94 to 96% in 2000 and 99% in 2001) occurred on leaves sprayed with M. ochracea in August. The production of ascospores was reduced by 61 to 84% in 2000 and 93% in 2001 on leaves sprayed with M. ochracea in September, reduced by 64 to 86% in 2000 and 74 to 89% in 2001 on leaves sprayed in October, and reduced by 54 and 67% in 2000 and 2001, respectively, on leaves sprayed in November. It was concluded that M. ochracea should be applied in August or September and that ascospore maturation models and delayed-fungicide program could be used in orchards treated with this biological control agent.

1997 ◽  
Vol 75 (4) ◽  
pp. 626-631 ◽  
Author(s):  
A. Ouimet ◽  
O. Carisse ◽  
P. Neumann

As a part of a broader study on biological control of apple scab, caused by Venturia inaequalis, a collection of 183 microorganisms originating from apple leaf litter was evaluated for their inhibitory effects on the vegetative growth of V. inaequalis. In a first screening, based on dual culture, 31 isolates (17%) showed inhibition. From these isolates, 11 fungi were selected for quantitative evaluation based on the presence of a distinct zone of inhibition. The selected fungi were evaluated again, in a more precise test, which indicated that isolates P164A (Ophiostoma sp.), P66A (Chaetophoma sp.), P26A (Aureobasidium sp.), P59A (Phoma sp.), and P28A (unidentified) inhibited 95.3, 88.9, 85.8, 80.7, and 80.1% of mycelial growth, respectively. Inhibition by the most effective fungus (Ophiostoma sp.) lasted for more than 58 days. A test using culture filtrates, incubated over time, was carried out to determine whether the living fungus was a prerequisite for inhibition. The inhibitory effect of metabolites secreted by the selected fungi was less than 5%. This study revealed the potential of at least five fungi that could be considered in the development of a biological control agent against V. inaequalis. Key words: antifungal inhibition, apple scab, biological control.


2000 ◽  
Vol 90 (1) ◽  
pp. 31-37 ◽  
Author(s):  
Odile Carisse ◽  
Vincent Philion ◽  
Daniel Rolland ◽  
Julie Bernier

The influences of Microsphaeropsis sp., M. arundinis, Ophiostoma sp., Diplodia sp., and Trichoderma sp., all antagonists of Venturia inaequalis, on ascospore production were evaluated under natural conditions and compared with urea and Athelia bombacina, a known antagonist. In the autumn, the fungi were applied to leaf disks artificially inoculated with V. inaequalis and to scabbed apple (Malus domestica) leaves incubated under controlled and natural conditions. In addition, large-scale trials were conducted with Microsphaeropsis sp. applied either as a foliar postharvest spray or as a ground application at 90% leaf fall. All fungal isolates, except Ophiostoma sp., were recovered from the leaf material that overwintered in the orchard. All treatments, except those with Ophiostoma sp., resulted in a significant reduction in V. inaequalis ascospore production on the leaf disks incubated under controlled conditions or in the orchard. In 1997, leaves with apple scab lesions treated with urea or Microsphaeropsis sp. produced significantly fewer ascospores of V. inaequalis than did nontreated leaves, with a reduction of 73.0 and 76.3%, respectively. In 1998, leaves treated with Microsphaeropsis sp., urea, Trichoderma sp., A. bombacina, and M. arundinis reduced ascospore production by 84.3, 96.6, 75.2, 96.6, and 52.2%, respectively. Based on all tests combined, the most efficient isolate was Microsphaeropsis sp. Postharvest applications of Microsphaeropsis sp. reduced the total amount of airborne ascospores trapped by 70.7 and 79.8% as compared with the nontreated plots in 1997 and 1998, respectively. Microsphaeropsis sp. provided a significant and consistent reduction in ascospore production in all tests.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
M. M. Rahman ◽  
M. E. Ali ◽  
A. A. Khan ◽  
A. M. Akanda ◽  
Md. Kamal Uddin ◽  
...  

A total of 91 isolates of probable antagonistic bacteria of potato soft rot bacteriumErwinia carotovorasubsp.carotovora(Ecc) were extracted from rhizospheres and endophytes of various crop plants, different soil varieties, and atmospheres in the potato farming areas of Bangladesh. Antibacterial activity of the isolated probable antagonistic bacteria was testedin vitroagainst the previously identified most common and most virulent soft rot causing bacterial strain Ecc P-138. Only two isolates E-45 and E-65 significantly inhibited thein vitrogrowth of Ecc P-138. Physiological, biochemical, and carbon source utilization tests identified isolate E-65 as a member of the genusBacillusand the isolate E-45 asLactobacillussp. The stronger antagonistic activity against Ecc P-138 was found in E-65in vitroscreening and storage potatoes. E-65 reduced the soft rot infection to 22-week storage potatoes of different varieties by 32.5–62.5% in model experiment, demonstrating its strong potential to be used as an effective biological control agent for the major pectolytic bacteria Ecc. The highest (62.5%) antagonistic effect of E-65 was observed in the Granola and the lowest (32.7%) of that was found in the Cardinal varieties of the Bangladeshi potatoes. The findings suggest that isolate E-65 could be exploited as a biocontrol agent for potato tubers.


2002 ◽  
Vol 68 (9) ◽  
pp. 4383-4389 ◽  
Author(s):  
Pingsheng Ji ◽  
Mark Wilson

ABSTRACT Bacterial speck of tomato, caused by Pseudomonas syringae pv. tomato, was used to determine whether similarity in carbon source utilization between a preemptive biological control agent and the pathogen was significant in determining the ability of the bacterium to suppress disease. Similarity in carbon source utilization was quantified as the ratio of the number of tomato carbon sources utilized in vitro by the biological control agent to the number of tomato carbon sources utilized in vitro by the target pathogen (the niche overlap index [NOI]). Suppression of the disease was quantified as the percent reduction in disease severity compared to the pathogen-only control when nonpathogenic bacteria were applied to foliage 48 h prior to the pathogen. In the collection of 36 nonpathogenic bacterial strains, there was a significant (P < 0.01), but weak (r2 = 0.25), correlation between reduction in disease severity and similarity in carbon source utilization, suggesting that similarity in carbon source use was significant in determining ability to suppress disease. The relationship was investigated further using catabolic mutants of P. syringae strain TLP2, an effective biological control agent of speck. Catabolic mutants exhibited lower levels of similarity (NOI = 0.07 to 0.90) than did wild-type TLP2 (NOI = 0.93). With these catabolic mutants there was a significant (P < 0.01), and stronger (r2 = 0.42), correlation between reduction in disease severity and similarity in carbon source utilization. This suggests that similarity in carbon source utilization was a more important component of biological control ability for the catabolic mutants than for the nonpathogenic bacteria. Together, these studies indicate that suppression of bacterial speck of tomato was correlated with nutritional similarity between the pathogenic and nonpathogenic bacteria and suggest that preemptive utilization of carbon sources was probably involved in the biological control of the disease by both the naturally occurring nonpathogenic bacteria and the catabolic mutants.


2012 ◽  
Vol 61 (3) ◽  
pp. 185-193 ◽  
Author(s):  
K.P. Singh ◽  
S.S. Vaish ◽  
Niranjan Kumar ◽  
K.D. Singh ◽  
Minakshi Kumari

2020 ◽  
Vol 87 (1) ◽  
Author(s):  
Thao D. Tran ◽  
Celia Del Cid ◽  
Robert Hnasko ◽  
Lisa Gorski ◽  
Jeffery A. McGarvey

ABSTRACT Listeria monocytogenes is a foodborne pathogen that causes high rates of hospitalization and mortality in people infected. Contamination of fresh, ready to eat produce by this pathogen is especially troubling because of the ability of this bacterium to grow on produce under refrigeration temperatures. In this study, we created a library of over 8,000 plant phyllosphere-associated bacteria and screened them for the ability to inhibit the growth of L. monocytogenes in an in vitro fluorescence-based assay. One isolate, later identified as Bacillus amyloliquefaciens ALB65, was able to inhibit the fluorescence of L. monocytogenes by >30-fold in vitro. B. amyloliquefaciens ALB65 was also able to grow, persist, and reduce the growth of L. monocytogenes by >1.5 log CFU on cantaloupe melon rinds inoculated with 5 × 103 CFU at 30°C and was able to completely inhibit its growth at temperatures below 8°C. DNA sequence analysis of the B. amyloliquefaciens ALB65 genome revealed six gene clusters that are predicted to encode genes for antibiotic production; however, no plant or human virulence factors were identified. These data suggest that B. amyloliquefaciens ALB65 is an effective and safe biological control agent for the reduction of L. monocytogenes growth on intact cantaloupe melons and possibly other types of produce. IMPORTANCE Listeria monocytogenes is estimated by the Centers for Disease Control and Prevention and the U.S. Food and Drug Administration to cause disease in approximately 1,600 to 2,500 people in the United States every year. The largest known outbreak of listeriosis in the United States was associated with intact cantaloupe melons in 2011, resulting in 147 hospitalizations and 33 deaths. In this study, we demonstrated that Bacillus amyloliquefaciens ALB65 is an effective biological control agent for the reduction of L. monocytogenes growth on intact cantaloupe melons under both pre- and postharvest conditions. Furthermore, we demonstrated that B. amyloliquefaciens ALB65 can completely inhibit the growth of L. monocytogenes during cold storage (<8°C).


2020 ◽  
Vol 8 (3) ◽  
pp. 400 ◽  
Author(s):  
Ting Yan ◽  
Lu Liang ◽  
Ping Yin ◽  
Yang Zhou ◽  
Ashraf Mahdy Sharoba ◽  
...  

Salmonella is a leading cause of foodborne diseases, and in recent years, many isolates have exhibited a high level of antibiotic resistance, which has led to huge pressures on public health. Phages are a promising strategy to control food-borne pathogens. In this study, one of our environmental phage isolates, LPSEYT, was to be able to restrict the growth of zoonotic Salmonella enterica in vitro over a range of multiplicity of infections. Phage LPSEYT exhibited wide-ranging pH and thermal stability and rapid reproductive activity with a short latent period and a large burst size. Phage LPSEYT demonstrated potential efficiency as a biological control agent against Salmonella in a variety of food matrices, including milk and lettuce. Morphological observation, comparative genomic, and phylogenetic analysis revealed that LPSEYT does not belong to any of the currently identified genera within the Myoviridae family, and we suggest that LPSEYT represents a new genus, the LPSEYTvirus. This study contributes a phage database, develops beneficial phage resources, and sheds light on the potential application value of phages LPSEYT on food safety.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 891
Author(s):  
Mila Santos ◽  
Fernando Diánez ◽  
Alejandro Moreno-Gavíra ◽  
Brenda Sánchez-Montesinos ◽  
Francisco J. Gea

A study was conducted to explore the efficacy of potential biocontrol agent Cladobotryum mycophilum against different phytopathogenic fungi. The growth rates of 24 isolates of C. mycophilum were determined, and their antagonistic activity was analysed in vitro and in vivo against Botrytis cinerea, Fusarium oxysporum f. sp. radicis-lycopersici, Fusarium oxysporum f.sp. cucumerinum, Fusarium solani, Phytophthora parasitica, Phytophthora capsici, Pythium aphanidermatum and Mycosphaerella melonis. Most isolates grow rapidly, reaching the opposite end of the Petri dish within 72–96 h. Under dual-culture assays, C. mycophilum showed antagonistic activity in vitro against all phytopathogenic fungi tested, with mycelial growth inhibition ranging from 30 to 90% against all the different phytopathogens tested. Similarly, of all the selected isolates, CL60A, CL17A and CL18A significantly (p < 0.05) reduced the disease incidence and severity in the plant assays compared to the controls for the different pathosystems studied. Based on these results, we conclude that C. mycophilum can be considered as a potential biological control agent in agriculture. This is the first study of Cladobotryum mycophilum as a biological control agent for different diseases caused by highly relevant phytopathogens in horticulture.


Plant Disease ◽  
2004 ◽  
Vol 88 (11) ◽  
pp. 1262-1268 ◽  
Author(s):  
J. W. Buck ◽  
S. N. Jeffers

Efficacy of the yeast Rhodotorula glutinis isolate PM4 as a biological control agent against 29 isolates of Botrytis cinerea obtained from greenhouse-grown ornamentals was assessed in vitro on geranium leaf disks. Isolates of B. cinerea varied in aggressiveness in the absence of either biological or chemical controls; diameters of lesions produced on leaf disks ranged from 0.8 to 12.3 mm. Efficacy of R. glutinis PM4 against the different isolates of B. cinerea varied greatly; lesion diameters ranged from 0.2 to 10.3 mm when the yeast was present. The yeast significantly reduced lesion development by 16 B. cinerea isolates in each of two replicate trials and by 9 isolates in one of the trials; however, 3 isolates were not inhibited by the yeast on geranium leaf disks. The yeast significantly reduced lesion development by B. cinerea isolate 01, used as a standard for comparison, in four of six trials. Fourteen of the B. cinerea isolates were inoculated onto geranium seedlings and produced a range of lesion sizes (2.9 to 16.4 mm), similar to that produced on leaf disks. Efficacy of the yeast in combination with a reduced rate (0.1×) of the fungicide vinclozolin (50 μg of active ingredient ml-1) was evaluated on geranium seedlings against 10 isolates of B. cinerea that were resistant to vinclozolin. Addition of vinclozolin to the yeast significantly reduced lesion diameter by five of the isolates compared with diameters of lesions produced in the presence of the yeast alone. Lesions produced by nine of the resistant isolates were 2.6 mm or smaller in both trials on plants treated with the mixture of yeast and vinclozolin. The effect of vinclozolin concentration (0 to 500 μg a.i. ml-1) on biocontrol efficacy of R. glutinis PM4 was evaluated using three resistant isolates of B. cinerea and geranium seedlings. Disease control was significantly better at higher concentrations of fungicide for two of the isolates. Linear regression of lesion diameter against vinclozolin concentration showed a significant effect on yeast biocontrol efficacy with B. cinerea isolate FL-2-b (y = 6.20 – 0.63x; r2= 0.74) and isolate BR-1 (y = 4.10 – 0.32x; r2 =0.28) but there was no significant effect with isolate GG-2-b. Overall, PM4 exhibited biocontrol activity on both geranium leaf disks and seedlings against a number of isolates of B. cinerea that varied in aggressiveness. Variability in biocontrol efficacy against isolates resistant to vinclozolin usually was reduced by the addition of vinclozolin.


2021 ◽  
Vol 7 (8) ◽  
pp. 598
Author(s):  
Brenda Sánchez-Montesinos ◽  
Mila Santos ◽  
Alejandro Moreno-Gavíra ◽  
Teresa Marín-Rodulfo ◽  
Francisco J. Gea ◽  
...  

Our purpose was to evaluate the ability of Trichoderma aggressivum f. europaeum as a biological control agent against diseases from fungal phytopathogens. Twelve isolates of T. aggressivum f. europaeum were obtained from several substrates used for Agaricus bisporus cultivation from farms in Castilla-La Mancha (Spain). Growth rates of the 12 isolates were determined, and their antagonistic activity was analysed in vitro against Botrytis cinerea, Sclerotinia sclerotiorum, Fusarium solani f. cucurbitae, Pythium aphanidermatum, Rhizoctonia solani, and Mycosphaerella melonis, and all isolates had high growth rates. T. aggressivum f. europaeum showed high antagonistic activity for different phytopathogens, greater than 80%, except for P. aphanidermatum at approximately 65%. The most effective isolate, T. aggressivum f. europaeum TAET1, inhibited B. cinerea, S. sclerotiorum, and M. melonis growth by 100% in detached leaves assay and inhibited germination of S. sclerotiorum sclerotia. Disease incidence and severity in plant assays for pathosystems ranged from 22% for F. solani to 80% for M. melonis. This isolate reduced the incidence of Podosphaera xanthii in zucchini leaves by 66.78%. The high compatibility by this isolate with fungicides could allow its use in combination with different pest management strategies. Based on the results, T. aggressivum f. europaeum TAET1 should be considered for studies in commercial greenhouses as a biological control agent.


Sign in / Sign up

Export Citation Format

Share Document