Generation of Sugarcane streak mosaic virus-free sugarcane (Saccharum spp. hybrid) from infected plants by in vitro meristem tip culture

2011 ◽  
Vol 130 (4) ◽  
pp. 597-604 ◽  
Author(s):  
Subba Reddy Ch. V. ◽  
Sreenivasulu P.
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anthony Gobert ◽  
Yifat Quan ◽  
Mathilde Arrivé ◽  
Florent Waltz ◽  
Nathalie Da Silva ◽  
...  

AbstractPlant viruses cause massive crop yield loss worldwide. Most plant viruses are RNA viruses, many of which contain a functional tRNA-like structure. RNase P has the enzymatic activity to catalyze the 5′ maturation of precursor tRNAs. It is also able to cleave tRNA-like structures. However, RNase P enzymes only accumulate in the nucleus, mitochondria, and chloroplasts rather than cytosol where virus replication takes place. Here, we report a biotechnology strategy based on the re-localization of plant protein-only RNase P to the cytosol (CytoRP) to target plant viruses tRNA-like structures and thus hamper virus replication. We demonstrate the cytosol localization of protein-only RNase P in Arabidopsis protoplasts. In addition, we provide in vitro evidences for CytoRP to cleave turnip yellow mosaic virus and oilseed rape mosaic virus. However, we observe varied in vivo results. The possible reasons have been discussed. Overall, the results provided here show the potential of using CytoRP for combating some plant viral diseases.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 963
Author(s):  
Maria C. Holeva ◽  
Athanasios Sklavounos ◽  
Rajendran Rajeswaran ◽  
Mikhail M. Pooggin ◽  
Andreas E. Voloudakis

Cucumber mosaic virus (CMV) is a destructive plant virus with worldwide distribution and the broadest host range of any known plant virus, as well as a model plant virus for understanding plant–virus interactions. Since the discovery of RNA interference (RNAi) as a major antiviral defense, RNAi-based technologies have been developed for plant protection against viral diseases. In plants and animals, a key trigger of RNAi is double-stranded RNA (dsRNA) processed by Dicer and Dicer-like (DCL) family proteins in small interfering RNAs (siRNAs). In the present study, dsRNAs for coat protein (CP) and 2b genes of CMV were produced in vitro and in vivo and applied onto tobacco plants representing a systemic solanaceous host as well as on a local host plant Chenopodium quinoa. Both dsRNA treatments protected plants from local and systemic infection with CMV, but not against infection with unrelated viruses, confirming sequence specificity of antiviral RNAi. Antiviral RNAi was effective when dsRNAs were applied simultaneously with or four days prior to CMV inoculation, but not four days post inoculation. In vivo-produced dsRNAs were more effective than the in vitro-produced; in treatments with in vivo dsRNAs, dsRNA-CP was more effective than dsRNA-2b, while the effects were opposite with in vitro dsRNAs. Illumina sequencing of small RNAs from in vivo dsRNA-CP treated and non-treated tobacco plants revealed that interference with CMV infection in systemic leaves coincides with strongly reduced accumulation of virus-derived 21- and 22-nucleotide (nt) siRNAs, likely generated by tobacco DCL4 and DCL2, respectively. While the 21-nt class of viral siRNAs was predominant in non-treated plants, 21-nt and 22-nt classes accumulated at almost equal (but low) levels in dsRNA treated plants, suggesting that dsRNA treatment may boost DCL2 activity. Taken together, our findings confirm the efficacy of topical application of dsRNA for plant protection against viruses and shed more light on the mechanism of antiviral RNAi.


2003 ◽  
Vol 84 (2) ◽  
pp. 497-505 ◽  
Author(s):  
Yasuhiko Matsushita ◽  
Mayumi Ohshima ◽  
Kuniaki Yoshioka ◽  
Masamichi Nishiguchi ◽  
Hiroshi Nyunoya

2000 ◽  
Vol 74 (5) ◽  
pp. 2247-2254 ◽  
Author(s):  
Wenping Qiu ◽  
Scholthof G. Karen-Beth

ABSTRACT Satellite panicum mosaic virus (SPMV) depends on its helper virus, panicum mosaic virus (PMV), to provide trans-acting proteins for replication and movement. The 824-nucleotide (nt) genome of SPMV possesses an open reading frame encoding a 17.5-kDa capsid protein (CP), which is shown to be dispensable for SPMV replication. To localize cis-acting RNA elements required for replication and movement, a comprehensive set of SPMV cDNA deletion mutants was generated. The results showed that the 263-nt 3′ untranslated region (UTR) plus 73 nt upstream of the CP stop codon and the first 16 nt in the 5′ UTR are required for SPMV RNA amplification and/or systemic spread. A region from nt 17 to 67 within the 5′ UTR may have an accessory role in RNA accumulation, and a fragment bracketing nt 68 to 104 appears to be involved in the systemic movement of SPMV RNA in a host-dependent manner. Unexpectedly, defective RNAs (D-RNAs) accumulated de novo in millet plants coinfected with PMV and either of two SPMV mutants: SPMV-91, which is incapable of expressing the 17.5-kDa CP, and SPMV-GUG, which expresses low levels of the 17.5-kDa CP. The D-RNA derived from SPMV-91 was isolated from infected plants and used as a template to generate a cDNA clone. RNA transcripts derived from this 399-nt cDNA replicated and moved in millet plants coinoculated with PMV. The characterization of this D-RNA provided a biological confirmation that the critical RNA domains identified by the reverse genetic strategy are essential for SPMV replication and movement. The results additionally suggest that a potential “trigger” for spontaneous D-RNA accumulation may be associated with the absence or reduced accumulation of the 17.5-kDa SPMV CP. This represents the first report of a D-RNA associated with a satellite virus.


2000 ◽  
Vol 74 (24) ◽  
pp. 11671-11680 ◽  
Author(s):  
T. A. M. Osman ◽  
C. L. Hemenway ◽  
K. W. Buck

ABSTRACT A template-dependent RNA polymerase has been used to determine the sequence elements in the 3′ untranslated region of tobacco mosaic virus RNA that are required for promotion of minus-strand RNA synthesis and binding to the RNA polymerase in vitro. Regions which were important for minus-strand synthesis were domain D1, which is equivalent to a tRNA acceptor arm; domain D2, which is similar to a tRNA anticodon arm; an upstream domain, D3; and a central core, C, which connects domains D1, D2, and D3 and determines their relative orientations. Mutational analysis of the 3′-terminal 4 nucleotides of domain D1 indicated the importance of the 3′-terminal CA sequence for minus-strand synthesis, with the sequence CCCA or GGCA giving the highest transcriptional efficiency. Several double-helical regions, but not their sequences, which are essential for forming pseudoknot and/or stem-loop structures in domains D1, D2, and D3 and the central core, C, were shown to be required for high template efficiency. Also important were a bulge sequence in the D2 stem-loop and, to a lesser extent, a loop sequence in a hairpin structure in domain D1. The sequence of the 3′ untranslated region upstream of domain D3 was not required for minus-strand synthesis. Template-RNA polymerase binding competition experiments showed that the highest-affinity RNA polymerase binding element region lay within a region comprising domain D2 and the central core, C, but domains D1 and D3 also bound to the RNA polymerase with lower affinity.


1986 ◽  
Vol 6 (6) ◽  
pp. 455-465 ◽  
Author(s):  
Nevin Dale Young ◽  
Milton Zaitlin

2006 ◽  
Vol 80 (17) ◽  
pp. 8329-8344 ◽  
Author(s):  
Jamie Ashby ◽  
Emmanuel Boutant ◽  
Mark Seemanpillai ◽  
Adrian Sambade ◽  
Christophe Ritzenthaler ◽  
...  

ABSTRACT The cell-to-cell spread of Tobacco mosaic virus infection depends on virus-encoded movement protein (MP), which is believed to form a ribonucleoprotein complex with viral RNA (vRNA) and to participate in the intercellular spread of infectious particles through plasmodesmata. Previous studies in our laboratory have provided evidence that the vRNA movement process is correlated with the ability of the MP to interact with microtubules, although the exact role of this interaction during infection is not known. Here, we have used a variety of in vivo and in vitro assays to determine that the MP functions as a genuine microtubule-associated protein that binds microtubules directly and modulates microtubule stability. We demonstrate that, unlike MP in whole-cell extract, microtubule-associated MP is not ubiquitinated, which strongly argues against the hypothesis that microtubules target the MP for degradation. In addition, we found that MP interferes with kinesin motor activity in vitro, suggesting that microtubule-associated MP may interfere with kinesin-driven transport processes during infection.


2010 ◽  
Vol 127 (1) ◽  
pp. 13-19 ◽  
Author(s):  
K. P. Srinivas ◽  
Ch. V. Subba Reddy ◽  
B. Ramesh ◽  
P. Lava Kumar ◽  
P. Sreenivasulu

Sign in / Sign up

Export Citation Format

Share Document