Transcriptome profiling of periwinkle infected with Huanglongbing (‘Candidatus Liberibacter asiaticus’)

2018 ◽  
Vol 153 (3) ◽  
pp. 891-906 ◽  
Author(s):  
Xiaofei Liu ◽  
Yu Zheng ◽  
Gefu Wang-Pruski ◽  
Yun Gan ◽  
Bo Zhang ◽  
...  
2022 ◽  
Author(s):  
Agustina De Francesco ◽  
Amelia H. Lovelace ◽  
Dipan Shaw ◽  
Min Qiu ◽  
Yuanchao Wang ◽  
...  

‘Candidatus Liberibacter asiaticus’ (Las) is an emergent bacterial pathogen that is associated with the devastating citrus huanglongbing (HLB). Vectored by the Asian citrus psyllid, Las colonizes the phloem tissue of citrus, causing severe damage to infected trees. So far, cultivating pure Las culture in axenic media has not been successful, and dual-transcriptome analyses aiming to profile gene expression in both Las and its hosts have a low coverage of the Las genome because of the low abundance of bacterial RNA in total RNA extracts from infected tissues. Therefore, a lack of understanding of the Las transcriptome remains a significant knowledge gap. Here, we used a bacterial cell enrichment procedure and confidently determined the expression profiles of approximately 84% of the Las genes. Genes that exhibited high expression in citrus include transporters, ferritin, outer membrane porins, specific pilins, and genes involved in phage-related functions, cell wall modification, and stress responses. We also found 106 genes to be differentially expressed in citrus versus Asian citrus psyllids. Genes related to transcription or translation and resilience to host defense response were upregulated in citrus, whereas genes involved in energy generation and the flagella system were expressed to higher levels in psyllids. Finally, we determined the relative expression levels of potential Sec-dependent effectors, which are considered as key virulence factors of Las. This work advances our understanding of HLB biology and offers novel insight into the interactions of Las with its plant host and insect vector.


2020 ◽  
Vol 8 (4) ◽  
pp. 528
Author(s):  
Ángela Paulina Arce-Leal ◽  
Rocío Bautista ◽  
Edgar Antonio Rodríguez-Negrete ◽  
Miguel Ángel Manzanilla-Ramírez ◽  
José Joaquín Velázquez-Monreal ◽  
...  

Nowadays, Huanglongbing (HLB) disease, associated with Candidatus Liberibacter asiaticus (CLas), seriously affects citriculture worldwide, and no cure is currently available. Transcriptomic analysis of host–pathogen interaction is the first step to understand the molecular landscape of a disease. Previous works have reported the transcriptome profiling in response to HLB in different susceptible citrus species; however, similar studies in tolerant citrus species, including Mexican lime, are limited. In this work, we have obtained an RNA-seq-based differential expression profile of Mexican lime plants challenged against CLas infection, at both asymptomatic and symptomatic stages. Typical HLB-responsive differentially expressed genes (DEGs) are involved in photosynthesis, secondary metabolism, and phytohormone homeostasis. Enrichment of DEGs associated with biotic response showed that genes related to cell wall, secondary metabolism, transcription factors, signaling, and redox reactions could play a role in the tolerance of Mexican lime against CLas infection. Interestingly, despite some concordance observed between transcriptional responses of different tolerant citrus species, a subset of DEGs appeared to be species-specific. Our data highlights the importance of studying the host response during HLB disease using as model tolerant citrus species, in order to design new and opportune diagnostic and management methods.


2021 ◽  
Author(s):  
Agustina De Francesco ◽  
Amelia Lovelace ◽  
Dipan Shaw ◽  
Min Qiu ◽  
Yuanchao Wang ◽  
...  

Candidatus Liberibacter asiaticus (Las) is an emergent bacterial pathogen that is associated with the devastating citrus Huanglongbing (HLB). Vectored by the Asian citrus psyllid, Las colonizes the phloem tissue of citrus, causing severe damage to infected trees. So far, cultivating pure Las culture in axenic media has not been successful and dual-transcriptome analyses aiming to profile gene expression in both Las and its host(s) have a low coverage of the Las genome due to the low abundance of bacterial RNA in total RNA extracts from infected tissues. Therefore, the lack of a Las transcriptome remains as a significant knowledge gap. Here, we used a bacterial cell enrichment procedure and confidently determined the expression profiles of approximately 84% of the Las genes. Genes that exhibited the highest expression levels in citrus include ion transporters, ferritin, outer membrane porins, and genes involved in phage-related functions, pilus formation, cell wall modification, and stress responses. One hundred and six genes were found to be differentially expressed in citrus vs psyllids. Genes related to transcription/translation and resilience to host defense response were upregulated in citrus; whereas genes involved in energy generation and the flagella system were expressed to higher levels in psyllids. We also determined the relative expression levels of potential Sec-dependent effectors, which are considered as key virulence factors of Las. This work advances our understanding of HLB biology and offers novel insight into the interactions of Las with its plant host and insect vector.


2017 ◽  
Vol 107 (6) ◽  
pp. 662-668 ◽  
Author(s):  
Z. Zheng ◽  
F. Wu ◽  
L. B. Kumagai ◽  
M. Polek ◽  
X. Deng ◽  
...  

‘Candidatus Liberibacter asiaticus’ (CLas), an α-proteobacterium, is associated with citrus Huanglongbing (HLB; yellow shoot disease). In California, two cases of CLas have been detected in Los Angeles County, one in Hacienda Heights in 2012 and the other in San Gabriel in 2015. Although all infected trees were destroyed in compliance with a state mandate, citrus industry stakeholder concerns about HLB in California are high. Little is known about the biology of CLas, particularly the California strains, hindering effective HLB management efforts. In this study, next-generation sequencing technology (Illumina MiSeq) was employed to characterize the California CLas strains. Data sets containing >4 billion (Giga) bp of sequence were generated from each CLas sample. Two prophages (P-HHCA1-2 and P-SGCA5-1) were identified by the MiSeq read mapping technique referenced to two known Florida CLas prophage sequences, SC1 and SC2. P-HHCA1-2 was an SC2-like or Type 2 prophage of 38,989 bp in size. P-SGCA5-1 was an SC1-like or Type 1 prophage of 37,487 bp in size. Phylogenetic analysis revealed that P-HHCA1-2 was part of an Asiatic lineage within the Type 2 prophage group. Similarly, P-SGCA5-1 was part of an Asiatic lineage within Type 1 prophage group. The Asiatic relatedness of both P-HHCA1-2 and P-SGCA5-1 was further presented by single nucleotide polymorphism analysis at terL (encoding prophage terminase) that has been established for CLas strain differentiation. The presence of different prophages suggests that the two California CLas strains could have been introduced from different sources. An alternative explanation is that there was a mixed CLas population containing the two types of prophages, and limited sampling in a geographic region may not accurately depict the true CLas diversity. More accurate pathway analysis may be achieved by including more strains collected from the regions.


Plant Disease ◽  
2016 ◽  
Vol 100 (6) ◽  
pp. 1080-1086 ◽  
Author(s):  
Greg McCollum ◽  
Mark Hilf ◽  
Mike Irey ◽  
Weiqi Luo ◽  
Tim Gottwald

Huanglongbing (HLB) disease is the most serious threat to citrus production worldwide and, in the last decade, has devastated the Florida citrus industry. In the United States, HLB is associated with the phloem-limited α-proteobacterium ‘Candidatus Liberibacter asiaticus’ and its insect vector, the Asian citrus psyllid (ACP; Diaphorina citri). Significant effort is being put forth to develop novel citrus germplasm that has a lower propensity to succumb to HLB than do currently available varieties. Effective methods of screening citrus germplasm for susceptibility to HLB are essential. In this study, we exposed small, grafted trees of 16 citrus types to free-ranging ACP vectors and ‘Ca. L. asiaticus’ inoculum in the greenhouse. During 45 weeks of exposure to ACP, the cumulative incidence of ‘Ca. L. asiaticus’ infection was 70%. Trees of Citrus macrophylla and C. medica were most susceptible to ‘Ca. L. asiaticus’, with 100% infection by the end of the test period in three trials, while the complex genetic hybrids ‘US 1-4-59’ and ‘Fallglo’ consistently were least susceptible, with approximately 30% infection. Results obtained in this greenhouse experiment showed good agreement with trends observed in the orchard, supporting the validity of our approach for screening citrus germplasm for susceptibility to HLB.


Plant Disease ◽  
2013 ◽  
Vol 97 (10) ◽  
pp. 1295-1300 ◽  
Author(s):  
Lianming Lu ◽  
Baoping Cheng ◽  
Jinai Yao ◽  
Aitian Peng ◽  
Danchao Du ◽  
...  

In this study, two polyclonal antibodies were produced against the Omp protein of ‘Candidatus Liberibacter asiaticus’. First, omp genes were sequenced to exhibit 99.9% identity among 137 isolates collected from different geographical origins. Then, two peptides containing the hydrophobic polypeptide-transport-associated (POTRA) domain and β-barrel domain, respectively, were identified on Omp protein. After that, these two peptides were overexpressed in Escherichia coli and purified by affinity chromatography to immunize the white rabbits. Finally, the antiserum was purified by affinity chromatography. The two Omp antibodies gave positive results (0.454 to 0.633, 1:1,600 dilution) in enzyme-linked immunosorbent assay against ‘Ca. L. asiaticus’-infected samples collected from different geographical origins but revealed negative results against other pathogen-infected, nutrient-deficient and healthy samples. The antibody against the POTRA domain of Omp protein could detect ‘Ca. L. asiaticus’ in 45.7% of the symptomatic samples compared with a 56.2% detection rate with a polymerase chain reaction assay. These new antibodies will provide a very useful supplement to the current approaches to ‘Ca. L. asiaticus’ detection and also provide powerful research tools for tracking distribution of this pathogen in vivo.


2011 ◽  
Vol 7 (1) ◽  
pp. 1-4 ◽  
Author(s):  
N. J. Donovan ◽  
G. A. C. Beattie ◽  
G. A. Chambers ◽  
P. Holford ◽  
A. Englezou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document