Spatial distribution and source identification of persistent pollutants in marine sediments of Hong Kong

2012 ◽  
Vol 185 (6) ◽  
pp. 4693-4704 ◽  
Author(s):  
Xuan Zhang ◽  
Honglei Jiang ◽  
Yaozong Zhang
2019 ◽  
Vol 138 ◽  
pp. 437-450 ◽  
Author(s):  
Vahid Aghadadashi ◽  
Mahmoud Reza Neyestani ◽  
Ali Mehdinia ◽  
Alireza Riyahi Bakhtiari ◽  
Saeideh Molaei ◽  
...  

2007 ◽  
Vol 52 (1) ◽  
pp. 173-173
Author(s):  
S. C. Choi ◽  
Onyx W. H. Wai ◽  
W. H. Lo ◽  
X. D. Li ◽  
C. W. Tsang

2017 ◽  
Vol 21 (9) ◽  
pp. 4573-4589 ◽  
Author(s):  
Liang Gao ◽  
Limin Zhang ◽  
Mengqian Lu

Abstract. Rainfall is the primary trigger of landslides in Hong Kong; hence, rainstorm spatial distribution is an important piece of information in landslide hazard analysis. The primary objective of this paper is to quantify spatial correlation characteristics of three landslide-triggering large storms in Hong Kong. The spatial maximum rolling rainfall is represented by a rotated ellipsoid trend surface and a random field of residuals. The maximum rolling 4, 12, 24, and 36 h rainfall amounts of these storms are assessed via surface trend fitting, and the spatial correlation of the detrended residuals is determined through studying the scales of fluctuation along eight directions. The principal directions of the surface trend are between 19 and 43°, and the major and minor axis lengths are 83–386 and 55–79 km, respectively. The scales of fluctuation of the residuals are found between 5 and 30 km. The spatial distribution parameters for the three large rainstorms are found to be similar to those for four ordinary rainfall events. The proposed rainfall spatial distribution model and parameters help define the impact area, rainfall intensity and local topographic effects for landslide hazard evaluation in the future.


2007 ◽  
Vol 54 (6) ◽  
pp. 745-756 ◽  
Author(s):  
Feng Zhou ◽  
Huaicheng Guo ◽  
Yong Liu ◽  
Yumei Jiang

Sign in / Sign up

Export Citation Format

Share Document