Acoustic instability in aerosols

2021 ◽  
Vol 129 (1) ◽  
Author(s):  
Avshalom Offner ◽  
Guy Z. Ramon
Keyword(s):  
1968 ◽  
Vol 24 (4) ◽  
pp. 461-461
Author(s):  
V. D. Goryachenko

1982 ◽  
Vol 28 (2) ◽  
pp. 267-279 ◽  
Author(s):  
R. Bharuthram ◽  
M. A. Hellberg

The linear growth rate of the crossfield current-driven ion-acoustic instability is obtained for any equilibrium particle velocity distribution function of the type . Quasi-linear theory is then used to investigate the saturation of the instability. Several associated features, namely, particle diffusion in velocity space, anomalous resistivity, energy distribution and electron and ion heating rates are evaluated for a Maxwellian distribution. Finally, a brief comparison is made with the heating rates associated with the electron cyclotron drift instability.


2015 ◽  
Vol 22 (2) ◽  
pp. 167-171
Author(s):  
J. Guo ◽  
B. Yu

Abstract. With two-dimensional (2-D) particle-in-cell (PIC) simulations we investigate the evolution of the double layer (DL) driven by magnetic reconnection. Our results show that an electron beam can be generated in the separatrix region as magnetic reconnection proceeds. This electron beam could trigger the ion-acoustic instability; as a result, a DL accompanied with electron holes (EHs) can be found during the nonlinear evolution stage of this instability. The spatial size of the DL is about 10 Debye lengths. This DL propagates along the magnetic field at a velocity of about the ion-acoustic speed, which is consistent with the observation results.


1992 ◽  
Vol 385 ◽  
pp. 193 ◽  
Author(s):  
Hyesung Kang ◽  
T. W. Jones ◽  
Dongsu Ryu

2021 ◽  
pp. 107754632110501
Author(s):  
Nilaj N Deshmukh ◽  
Afzal Ansari ◽  
Praseed Kumar ◽  
Allen V George ◽  
Febin J Thomas ◽  
...  

Thermo-acoustic instability occurs when self-excited oscillations are generated due to the coupling between unsteady heat release and acoustics. This phenomenon can result in an increased rate of vibration, structural damage, and produces unwanted emissions. Thermo-acoustic instability occurs in rocket engines, gas turbines, combustors, and furnaces. When thermo-acoustic instability occurs, many modes are developed naturally at a specific point. Some waves are unstable and some are stable. So, to study this phenomenon the most unstable waves are considered and a technique is developed to suppress these unstable waves. A radial air injector as a closed-loop active control method is used for breaking the coupling between the heat waves and acoustics inside the 1D combustion chamber. The distance between the burner and the air injector is varied for the fixed position of the burner with respect to the Rijke tube, that is, x/L = 0.01125, 0.0075, and 0.00375. This closed-loop method works based on the feedback acquired from a microphone. The control method is built using DAQ and Arduino with the LabVIEW as interface for Arduino (LIFA). An air flow rate controller setup is developed to control and measure air required for suppressing the thermo-acoustic instability. Thermo-acoustic instability is effectively suppressed with the help of radial injection in the form of micro-jets at the downstream of the burner as the closed-loop controlling method. It is concluded that when the radial micro-jet air injection plane is closer to the burner head, the thermo-acoustic instability gets suppressed in a short time and with a lesser quantity of air.


2020 ◽  
Vol 493 (4) ◽  
pp. 5323-5335 ◽  
Author(s):  
Philipp Kempski ◽  
Eliot Quataert ◽  
Jonathan Squire

ABSTRACT Weakly collisional, magnetized plasmas characterized by anisotropic viscosity and conduction are ubiquitous in galaxies, haloes, and the intracluster medium (ICM). Cosmic rays (CRs) play an important role in these environments as well, by providing additional pressure and heating to the thermal plasma. We carry out a linear stability analysis of weakly collisional plasmas with CRs using Braginskii MHD for the thermal gas. We assume that the CRs stream at the Alfvén speed, which in a weakly collisional plasma depends on the pressure anisotropy (Δp) of the thermal plasma. We find that this Δp dependence introduces a phase shift between the CR-pressure and gas-density fluctuations. This drives a fast-growing acoustic instability: CRs offset the damping of acoustic waves by anisotropic viscosity and give rise to wave growth when the ratio of CR pressure to gas pressure is ≳αβ−1/2, where β is the ratio of thermal to magnetic pressure, and α, typically ≲1, depends on other dimensionless parameters. In high-β environments like the ICM, this condition is satisfied for small CR pressures. We speculate that the instability studied here may contribute to the scattering of high-energy CRs and to the excitation of sound waves in galaxy-halo, group and cluster plasmas, including the long-wavelength X-ray fluctuations in Chandra observations of the Perseus cluster. It may also be important in the vicinity of shocks in dilute plasmas (e.g. cluster virial shocks or galactic wind termination shocks), where the CR pressure is locally enhanced.


Sign in / Sign up

Export Citation Format

Share Document