acoustic instability
Recently Published Documents


TOTAL DOCUMENTS

316
(FIVE YEARS 38)

H-INDEX

32
(FIVE YEARS 4)

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 227
Author(s):  
Fedor M. Trukhachev ◽  
Roman E. Boltnev ◽  
Mikhail M. Vasiliev ◽  
Oleg F. Petrov

The nonlinear dust-acoustic instability in the condensed submicron fraction of dust particles in the low-pressure glow discharge at ultra-low temperatures is experimentally and theoretically investigated. The main discharge parameters are estimated on the basisof the dust-acoustic wave analysis. In particular, the temperature and density of ions, as well as the Debye radius, are determined. It is shown that the ion temperature exceeds the temperature of the neutral gas. The drift characteristics of all plasma fractions are estimated. The reasons for the instability excitation are considered.


2021 ◽  
pp. 107754632110501
Author(s):  
Nilaj N Deshmukh ◽  
Afzal Ansari ◽  
Praseed Kumar ◽  
Allen V George ◽  
Febin J Thomas ◽  
...  

Thermo-acoustic instability occurs when self-excited oscillations are generated due to the coupling between unsteady heat release and acoustics. This phenomenon can result in an increased rate of vibration, structural damage, and produces unwanted emissions. Thermo-acoustic instability occurs in rocket engines, gas turbines, combustors, and furnaces. When thermo-acoustic instability occurs, many modes are developed naturally at a specific point. Some waves are unstable and some are stable. So, to study this phenomenon the most unstable waves are considered and a technique is developed to suppress these unstable waves. A radial air injector as a closed-loop active control method is used for breaking the coupling between the heat waves and acoustics inside the 1D combustion chamber. The distance between the burner and the air injector is varied for the fixed position of the burner with respect to the Rijke tube, that is, x/L = 0.01125, 0.0075, and 0.00375. This closed-loop method works based on the feedback acquired from a microphone. The control method is built using DAQ and Arduino with the LabVIEW as interface for Arduino (LIFA). An air flow rate controller setup is developed to control and measure air required for suppressing the thermo-acoustic instability. Thermo-acoustic instability is effectively suppressed with the help of radial injection in the form of micro-jets at the downstream of the burner as the closed-loop controlling method. It is concluded that when the radial micro-jet air injection plane is closer to the burner head, the thermo-acoustic instability gets suppressed in a short time and with a lesser quantity of air.


2021 ◽  
Vol 47 (10) ◽  
pp. 1007-1013
Author(s):  
M. A. Rakitina ◽  
A. V. Brantov

2021 ◽  
Vol 129 (1) ◽  
Author(s):  
Avshalom Offner ◽  
Guy Z. Ramon
Keyword(s):  

2021 ◽  
Vol 47 (4) ◽  
pp. 329-336
Author(s):  
V. V. Dyachenko ◽  
A. B. Altukhov ◽  
E. Z. Gusakov ◽  
L. A. Esipov ◽  
A. N. Konovalov ◽  
...  

Abstract The experiments at the FT-2 tokamak are described that were focused on clearing up the role of the parametric decay instabilities in decreasing the generation efficiency of the non-inductive current excited by the electromagnetic waves in the lower hybrid frequency range. The most discussed instability of such kind is the decay of the pump wave into the daughter high-frequency waves and the low-frequency ion–acoustic quasi-modes. The studies performed have shown that, under conditions of the FT-2 experiment, the ion–acoustic instability has no decisive effect on the decrease in the efficiency of the lower hybrid current drive.


Sign in / Sign up

Export Citation Format

Share Document