Fluid inflow from a source on the base of a channel

2021 ◽  
Vol 132 (1) ◽  
Author(s):  
Shaymaa M. Shraida ◽  
Graeme C. Hocking ◽  
Lawrence K. Forbes
Keyword(s):  
2019 ◽  
Vol 484 (1) ◽  
pp. 87-92
Author(s):  
T. M. Zlobina ◽  
V. A. Petrov ◽  
K. Yu. Murashov ◽  
A. A. Kotov

This study investigates the effect of mechanisms of paleode formations during the period of fluid inflow into the accumulation sphere of gold concentrations. Such mechanisms are believed to correspond to DC- and NDC- type seismic mechanisms, whose main influence on fluid migration lies on the formation of different, relative to fluid regime parameters, structural and hydrodynamic organizations of the ore-forming system, and fluid flow control within the area of the accumulation of ore concentrations.  


2021 ◽  
Author(s):  
Yakov Dzhalatyan ◽  
Mikhail Charupa ◽  
Aydar Galiev ◽  
Yevgeniy Karpekin ◽  
Sergey Egorov ◽  
...  

Abstract In the presented paper, the object of the study are carbonate rocks of the Riphean and clastic-carbonate rocks of Vendian-Cambrian ages, uncovered by the well drilled at Yurubcheno-Tokhomskoye field. These reservoirs are characterized by extremely low porosity (1-4%) and determining saturation nature and fluid contacts cannot be reliably solved by conventional wireline petrophysical logging. Solutions to these problems are provided by interval testing using wireline formation evaluation testing tool (WFT). However, to obtain quality results from WFT testing it is important to identify porous intervals first by using advanced wireline logging services which are sensitive to porosity and fractures. In order to select the optimal WFT toolstring combination and to prospective testing intervals, advanced petrophysical wireline logging suit ran first. Porous reservoirs were identified from density, neutron and nuclear magnetic resonance evaluation. Saturation evaluated through dielectric and induction-based resistivity logging. In fracture-vug type reservoir, the main inflow of formation fluid into the well is provided from fractures, so it was very important to allocate conductive fractures to plan test intervals for WFT accordingly. based on imagers evaluation, fractures and faults were visualized; using Stoneley's wave conductive fractures, not clogged with drilling mud solids were identified; borehole acoustic reflection survey was used to segregate large fractures that propagated in the reservoir; During WFT logging, a total of 23 intervals were tested, for 8 of which reservoir fluid inflow was achieved, in all others, mainly with low porosity or single non-conductive fracture, the inflow was not achieved or was insignificant. According to the results of WFT testing, the nature of saturation for clastic-carbonate sediments of Vendian age was determined. Inflow of formation fluid (oil and water) from Riphean fractured reservoirs was achieved from 6 intervals, with identified fractures according to described above advanced logging suit. In addition, pressure transient analysis was performed, to measure the formation pressure, define pressure gradient curves and assess the fluids contact level with high confidence, for the first time for this field.


2002 ◽  
Vol 282 (3) ◽  
pp. H850-H854 ◽  
Author(s):  
J. Job Faber ◽  
Debra F. Anderson

Swallowing of amniotic fluid and lung fluid inflow were eliminated in 10 chronically instrumented fetuses. The urachus was ligated, and fetal was urine drained to the outside. At the beginning and the end of 21 experiments of 66 ± 5 (SE) h duration, all amniotic fluid was temporarily drained to the outside for volume measurement and sampling. Amniotic fluid osmolalities and oncotic pressures were experimentally controlled. Amniochorionic absorption of amniotic fluid depended strongly on the osmolality difference between amniotic fluid and fetal plasma ( P< 0.001), but at zero osmolality difference there still was a mean absorption rate of 23.8 ± 4.7 (SE) ml/h ( P < 0.001). Absorption was unaffected by the protein concentration difference between amniotic fluid and fetal plasma, but infused bovine albumin in the amniotic fluid was absorbed at a rate of 1.8 ± 0.4 g/h ( P < 0.001), corresponding to a volume flow of fluid of 33.8 ± 6.1 ml/h ( P < 0.001). Fluid absorption in the amniochorion is driven in part by crystalloid osmotic pressure, but about 25 ml/h is absorbed by a path that is permeable to protein. That path has the physiological characteristics of lymphatic drainage, although no anatomic basis is known to exist for a lymphatic system in the amniochorion.


2019 ◽  
Author(s):  
Andrey Guryanov ◽  
Ruslan Gazizov ◽  
Evgeny Medvedev ◽  
Kirill Ovchinnikov ◽  
Pavel Buzin ◽  
...  

SPE Journal ◽  
2008 ◽  
Vol 13 (02) ◽  
pp. 216-225 ◽  
Author(s):  
Olukayode J. Aremu ◽  
Samuel O. Osisanya

Summary Wellbore storage effects have been identified to significantly smear the accuracy of evaluating reservoir productivity through the fluid outflow rate from the annulus during underbalanced drilling. Such effects have continuously introduced considerable errors in characterizing the reservoir during underbalanced drilling. Conceptually, because of the ready volume-changing ability of the gas, wellbore storage becomes a determining factor during underbalanced drilling of a gas reservoir. Wellbore storage could either cause decrease (unloading effects) or increase (loading effects) in the annular gas density, depending on the choke opening procedures. Correspondingly, annular fluid outflow rate is considerably affected. Because it is practically difficult to deduct the fluid-flow rate attributable to the wellbore storage from the total fluid outflow rate, reducing the influence of wellbore effects on the evaluation of gas-reservoir productivity is presented in this study. Volumetric production analysis at the wellbore-sand face is introduced through a mathematical modeling of inflow of gas bubbles into the wellbore. This mathematical modeling utilizes forces such as the viscous force, drilling fluid ejecting forces from the bit nozzles, buoyancy, interfacial tension, and gas-reservoir forces for its analyses. Some analytical results that are overshadowed by wellbore storage are presented and supported by extensive experimental studies. Introduction One of the derivable benefits from underbalanced drilling is the ability to evaluate the productivity of a reservoir during drilling operations (Beiseman amd Emeh 2002). Other benefits include little to no invasive formation damage; higher penetration rate, especially in hard rocks; and lower cost of drilling operations if underbalanced drilling could consistently be maintained (Bennion et al. 2002). However, from the real-time bottomhole pressure measurements taken while drilling, it is obvious that continuous maintenance of underbalanced conditions at the bottomhole is difficult. Pressure surges that occur during some subsidiary operations such as pipe connections and surveys tend to jeopardize the avoidance of invasive formation damage (Yurkiw et al. 2002). From the recent literature, reservoir evaluation has been approached through the estimation of the reservoir fluids flow rates into the wellbore. Assumption of the reservoir fluid inflow rate being the difference in the drilling fluid surface injection rate and the fluid outflow rate from the annulus has consistently been used (Kardolus and van Kruijsdijk 1997; Larsen and Nilsen 1999; Hunt and Rester 2000; Kneissl 200l; Lorentzen et al. 2001; Vefring et al. 2002; Biswas et al. 2003). So far, efforts in modeling reservoir fluid inflow have been concentrated on the oil inflow (Kardolus and van Kruijsdijk 1997; Larson and Nilsen 1999; Hunt and Rester 2000; Kneissl 200l; Lorentzen et al. 2001; Vefring et al. 2002; Biswas et al. 2003). These present approaches to production evaluation and characterization of gas formation recognize the important effects of wellbore phenomena, but have not been able to provide adequate means of reducing the influences. These wellbore phenomena include the gas-bubble coalescence and breakage, and bubble expansion and compression that are not possible to practically quantify during bubble annular upward flow. Because the present approaches involve the comparison of the surface fluid injection rate with the annular outflow rate, the influence of these phenomena on the gas formation evaluation is inevitable. Unfortunately, all of these wellbore phenomena cause additional annular flow rates that cannot be individually and practically measured, and thus the reservoir fluid inflow rate at the bottomhole cannot be practically modified for their influences. Not recognizing the impact of such additional annular flow rates could cause misjudgment of the inflow capabilities of the gas reservoir. In order to properly alleviate these effects on gas-inflow analyses, a volumetric production analysis at the wellbore-sand face contact is presented in this study. The conduction of gas-inflow analyses have been similarly performed as the liquid inflow in the petroleum engineering sectors. Practically speaking, gas inflow into a denser fluid system is bubbly in character, while liquid inflow is streaky. It is, therefore, proper to mathematically couple the forces of the viscosity, surface tension, inertia, and buoyancy that are responsible for gas-bubble formation or development to the drilling-fluid-ejecting forces from the bit nozzles and the reservoir forces in modeling gas-inflow scenarios. Therefore, with the existence of underbalanced pressure conditions at the bottomhole, the modeling procedures presented in this study could be used for predicting the total volume of gas inflow with significantly reduced wellbore effects while drilling. This is possible as long as an underbalanced condition is maintained at the bottomhole. This is a computer-simulation approach that utilizes real-time surface measurable underbalanced drilling data to predict quantitative gas volumes at the wellbore-sand face during drilling. As an additional advantage, the analyses do not involve knowing the gas inflow rate at the sand face, which could be difficult to accurately measure during underbalanced drilling operations. Standard engineering concepts are used to estimate downhole conditions for the analyses. Among the benefits from this study are reduced influences of the wellbore effects on the evaluation of gas-reservoir volumetric productivity during underbalanced drilling, the revealing of possible greater near-wellbore damage in some gas reservoirs, and possible in-situ permeability impairment through pore space compression.


2018 ◽  
Vol 15 (142) ◽  
pp. 20180075 ◽  
Author(s):  
Felix J. Meigel ◽  
Karen Alim

Life and functioning of higher organisms depends on the continuous supply of metabolites to tissues and organs. What are the requirements on the transport network pervading a tissue to provide a uniform supply of nutrients, minerals or hormones? To theoretically answer this question, we present an analytical scaling argument and numerical simulations on how flow dynamics and network architecture control active spread and uniform supply of metabolites by studying the example of xylem vessels in plants. We identify the fluid inflow rate as the key factor for uniform supply. While at low inflow rates metabolites are already exhausted close to flow inlets, too high inflow flushes metabolites through the network and deprives tissue close to inlets of supply. In between these two regimes, there exists an optimal inflow rate that yields a uniform supply of metabolites. We determine this optimal inflow analytically in quantitative agreement with numerical results. Optimizing network architecture by reducing the supply variance over all network tubes, we identify patterns of tube dilation or contraction that compensate sub-optimal supply for the case of too low or too high inflow rate.


Sign in / Sign up

Export Citation Format

Share Document