Reduction of Wellbore Effects on Gas Inflow Evaluation Under Underbalanced Conditions

SPE Journal ◽  
2008 ◽  
Vol 13 (02) ◽  
pp. 216-225 ◽  
Author(s):  
Olukayode J. Aremu ◽  
Samuel O. Osisanya

Summary Wellbore storage effects have been identified to significantly smear the accuracy of evaluating reservoir productivity through the fluid outflow rate from the annulus during underbalanced drilling. Such effects have continuously introduced considerable errors in characterizing the reservoir during underbalanced drilling. Conceptually, because of the ready volume-changing ability of the gas, wellbore storage becomes a determining factor during underbalanced drilling of a gas reservoir. Wellbore storage could either cause decrease (unloading effects) or increase (loading effects) in the annular gas density, depending on the choke opening procedures. Correspondingly, annular fluid outflow rate is considerably affected. Because it is practically difficult to deduct the fluid-flow rate attributable to the wellbore storage from the total fluid outflow rate, reducing the influence of wellbore effects on the evaluation of gas-reservoir productivity is presented in this study. Volumetric production analysis at the wellbore-sand face is introduced through a mathematical modeling of inflow of gas bubbles into the wellbore. This mathematical modeling utilizes forces such as the viscous force, drilling fluid ejecting forces from the bit nozzles, buoyancy, interfacial tension, and gas-reservoir forces for its analyses. Some analytical results that are overshadowed by wellbore storage are presented and supported by extensive experimental studies. Introduction One of the derivable benefits from underbalanced drilling is the ability to evaluate the productivity of a reservoir during drilling operations (Beiseman amd Emeh 2002). Other benefits include little to no invasive formation damage; higher penetration rate, especially in hard rocks; and lower cost of drilling operations if underbalanced drilling could consistently be maintained (Bennion et al. 2002). However, from the real-time bottomhole pressure measurements taken while drilling, it is obvious that continuous maintenance of underbalanced conditions at the bottomhole is difficult. Pressure surges that occur during some subsidiary operations such as pipe connections and surveys tend to jeopardize the avoidance of invasive formation damage (Yurkiw et al. 2002). From the recent literature, reservoir evaluation has been approached through the estimation of the reservoir fluids flow rates into the wellbore. Assumption of the reservoir fluid inflow rate being the difference in the drilling fluid surface injection rate and the fluid outflow rate from the annulus has consistently been used (Kardolus and van Kruijsdijk 1997; Larsen and Nilsen 1999; Hunt and Rester 2000; Kneissl 200l; Lorentzen et al. 2001; Vefring et al. 2002; Biswas et al. 2003). So far, efforts in modeling reservoir fluid inflow have been concentrated on the oil inflow (Kardolus and van Kruijsdijk 1997; Larson and Nilsen 1999; Hunt and Rester 2000; Kneissl 200l; Lorentzen et al. 2001; Vefring et al. 2002; Biswas et al. 2003). These present approaches to production evaluation and characterization of gas formation recognize the important effects of wellbore phenomena, but have not been able to provide adequate means of reducing the influences. These wellbore phenomena include the gas-bubble coalescence and breakage, and bubble expansion and compression that are not possible to practically quantify during bubble annular upward flow. Because the present approaches involve the comparison of the surface fluid injection rate with the annular outflow rate, the influence of these phenomena on the gas formation evaluation is inevitable. Unfortunately, all of these wellbore phenomena cause additional annular flow rates that cannot be individually and practically measured, and thus the reservoir fluid inflow rate at the bottomhole cannot be practically modified for their influences. Not recognizing the impact of such additional annular flow rates could cause misjudgment of the inflow capabilities of the gas reservoir. In order to properly alleviate these effects on gas-inflow analyses, a volumetric production analysis at the wellbore-sand face contact is presented in this study. The conduction of gas-inflow analyses have been similarly performed as the liquid inflow in the petroleum engineering sectors. Practically speaking, gas inflow into a denser fluid system is bubbly in character, while liquid inflow is streaky. It is, therefore, proper to mathematically couple the forces of the viscosity, surface tension, inertia, and buoyancy that are responsible for gas-bubble formation or development to the drilling-fluid-ejecting forces from the bit nozzles and the reservoir forces in modeling gas-inflow scenarios. Therefore, with the existence of underbalanced pressure conditions at the bottomhole, the modeling procedures presented in this study could be used for predicting the total volume of gas inflow with significantly reduced wellbore effects while drilling. This is possible as long as an underbalanced condition is maintained at the bottomhole. This is a computer-simulation approach that utilizes real-time surface measurable underbalanced drilling data to predict quantitative gas volumes at the wellbore-sand face during drilling. As an additional advantage, the analyses do not involve knowing the gas inflow rate at the sand face, which could be difficult to accurately measure during underbalanced drilling operations. Standard engineering concepts are used to estimate downhole conditions for the analyses. Among the benefits from this study are reduced influences of the wellbore effects on the evaluation of gas-reservoir volumetric productivity during underbalanced drilling, the revealing of possible greater near-wellbore damage in some gas reservoirs, and possible in-situ permeability impairment through pore space compression.

Author(s):  
Helen A. Ferguson ◽  
S. A. Mehta ◽  
R. Gordon Moore ◽  
Nancy E. Okazawa ◽  
Matthew G. Ursenbach

This investigation is directly relevant to various applications associated with the safety aspects of underbalanced drilling operations where de-oxygenated air may be co-injected with oil-based drilling fluid. However, de-oxygenated air often still contains up to 5% oxygen by volume. This residual oxygen can react with oil during the drilling process, thereby forming potentially hazardous oxidized hydrocarbons and compromising the safety of drilling operations. This article examines the conditions and processes by which oxidation reactions occur and may be helpful in reducing risk in drilling operations. This project characterizes the oxidation behaviour of several oils and a typical oil-based drilling fluid at atmospheric and elevated pressures using thermogravimetry (TG) and pressurized differential scanning calorimetry (PDSC). Tests performed on mineral matrix (core) from the oil reservoirs showed no reactivity in both inert and oxidizing atmospheres. In an inert atmosphere, tests on all hydrocarbon samples showed only vapourization, no reactivity. In an oxidizing environment, the tests on hydrocarbons showed several oxidation regions. The presence of core had no effect on the behaviour of the hydrocarbons tested in an inert atmosphere but accelerated the higher temperature oxidation reactions of the oil samples. The oil-based drilling fluid exhibited the opposite effect — the presence of core material retarded the oxidation reactions. This is perhaps due to the presence of an oxygen scavenger reacting with oxygen containing clays present in the mineral matrix. In all tests performed on mixtures of hydrocarbon and core in oxidizing atmospheres, elevated pressures resulted in acceleration of the lower and higher temperature reaction regions.


2003 ◽  
Vol 125 (3) ◽  
pp. 177-182 ◽  
Author(s):  
Helen A. Ferguson ◽  
S.A. (Raj) Mehta ◽  
R. Gordon Moore ◽  
Nancy E. Okazawa ◽  
Matthew G. Ursenbach

This investigation is directly relevant to various applications associated with the safety aspects of underbalanced drilling operations where de-oxygenated air may be co-injected with oil-based drilling fluid. However, de-oxygenated air often still contains up to 5% oxygen by volume. This residual oxygen can react with oil during the drilling process, thereby forming potentially hazardous oxidized hydrocarbons and compromising the safety of drilling operations. This article examines the conditions and processes by which oxidation reactions occur and may be helpful in reducing risk in drilling operations. This project characterizes the oxidation behavior of several oils and a typical oil-based drilling fluid at atmospheric and elevated pressures using thermogravimetry (TG) and pressurized differential scanning calorimetry (PDSC). Tests performed on mineral matrix (core) from the oil reservoirs showed no reactivity in both inert and oxidizing atmospheres. In an inert atmosphere, tests on all hydrocarbon samples showed only vaporization, no reactivity. In an oxidizing environment, the tests on hydrocarbons showed several oxidation regions. The presence of core had no effect on the behavior of the hydrocarbons tested in an inert atmosphere but accelerated the higher temperature oxidation reactions of the oil samples. The oil-based drilling fluid exhibited the opposite effect—the presence of core material retarded the oxidation reactions. This is perhaps due to the presence of an oxygen scavenger reacting with oxygen-containing clays present in the mineral matrix. In all tests performed on mixtures of hydrocarbon and core in oxidizing atmospheres, elevated pressures resulted in acceleration of the lower and higher temperature reaction regions.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1377
Author(s):  
Musaab I. Magzoub ◽  
Raj Kiran ◽  
Saeed Salehi ◽  
Ibnelwaleed A. Hussein ◽  
Mustafa S. Nasser

The traditional way to mitigate loss circulation in drilling operations is to use preventative and curative materials. However, it is difficult to quantify the amount of materials from every possible combination to produce customized rheological properties. In this study, machine learning (ML) is used to develop a framework to identify material composition for loss circulation applications based on the desired rheological characteristics. The relation between the rheological properties and the mud components for polyacrylamide/polyethyleneimine (PAM/PEI)-based mud is assessed experimentally. Four different ML algorithms were implemented to model the rheological data for various mud components at different concentrations and testing conditions. These four algorithms include (a) k-Nearest Neighbor, (b) Random Forest, (c) Gradient Boosting, and (d) AdaBoosting. The Gradient Boosting model showed the highest accuracy (91 and 74% for plastic and apparent viscosity, respectively), which can be further used for hydraulic calculations. Overall, the experimental study presented in this paper, together with the proposed ML-based framework, adds valuable information to the design of PAM/PEI-based mud. The ML models allowed a wide range of rheology assessments for various drilling fluid formulations with a mean accuracy of up to 91%. The case study has shown that with the appropriate combination of materials, reasonable rheological properties could be achieved to prevent loss circulation by managing the equivalent circulating density (ECD).


2012 ◽  
Vol 12 (05) ◽  
pp. 1240029 ◽  
Author(s):  
THU-THAO LE ◽  
RU-SAN TAN ◽  
FEIQIONG HUANG ◽  
LIANG ZHONG ◽  
SRIDHAR IDAPALAPATI ◽  
...  

Heart failure (HF), one of the most common diseases in the world, causes left ventricular dysfunction (LV) and high mortality. HF patients are stratified into two groups based on their LV ejection fraction (EF) — HF with normal EF (HFNEF) and with reduced EF (HFREF). EF is a commonly used measure of LV contractile performance. Despite preserved EF, a complex mixture of systolic and diastolic dysfunction and variable degrees of LV remodelling underlying HFNEF poses challenges to diagnose and provide pharmacological treatment for HFNEF. In recent years, the velocity flow mapping (VFM) technique has been developed to generate flow velocity vector fields by post-processing color Doppler echocardiographic (echo) images. We aim to obtain the intra-LV blood flow patterns for patients with HFNEF, HFREF, and normal subjects, in order to characterize the LV performance outcomes of normal subjects and HF patients. Two subjects from each group of HFNEF, HFREF, and normal underwent echo scans. Velocity vector distributions throughout the cardiac cycle were then analysed using the VFM technique. In each subject, the outflow rate during systole, inflow rate during diastole, as well as wall stress-based pressure-normalized contractility index, dσ*/dt max , were computed and compared among the groups. This study demonstrated the use of VFM to visualize LV blood flow patterns in HF patients and normal subjects. Different patterns of flow distributions were observed in these subjects. In HFREF patients, dσ*/dt max , the peak outflow rate and peak inflow rate during early filling were markedly reduced. In HFNEF patients, peak outflow rates were increased compared to those of normal subjects.


2021 ◽  
Author(s):  
Chen Hongbo ◽  
Okesanya Temi ◽  
Kuru Ergun ◽  
Heath Garett ◽  
Hadley Dylan

Abstract Recent studies highlight the significant role of drilling fluid elasticity in particle suspension and hole cleaning during drilling operations. Traditional methods to quantify fluid elasticity require the use of advanced rheometers not suitable for field application. The main objectives of the study were to develop a generalized model for determining viscoelasticity of a drilling fluid using standard field-testing equipment, investigate the factors influencing drilling fluid viscoelasticity in the field, and provide an understanding of the viscoelasticity concept. Over 80 fluid formulations used in this study included field samples of oil-based drilling fluids as well as laboratory samples formulated with bentonite and other polymers such as partially-hydrolyzed polyacrylamide, synthesized xanthan gum, and polyacrylic acid. Detailed rheological characterizations of these fluids used a funnel viscometer and a rotational viscometer. Elastic properties of the drilling fluids (quantified in terms of the energy required to cause an irreversible deformation in the fluid's structure) were obtained from oscillatory tests conducted using a cone-and-plate type rheometer. Using an empirical approach, a non-iterative model for quantifying elasticity correlated test results from a funnel viscometer and a rotational viscometer. The generalized model was able to predict the elasticity of drilling fluids with a mean absolute error of 5.75%. In addition, the model offers practical versatility by requiring only standard drilling fluid testing equipment to predict viscoelasticity. Experimental results showed that non-aqueous fluid (NAF) viscoelasticity is inversely proportional to the oil-water ratio and the presence of clay greatly debilitates the elasticity of the samples while enhancing their viscosity. The work efforts present a model for estimating drilling fluid elasticity using standard drilling fluid field-testing equipment. Furthermore, a revised approach helps to describe the viscoelastic property of a fluid that involves quantifying the amount of energy required to irreversibly deform a unit volume of viscoelastic fluid. The methodology, combined with the explanation of the viscoelasticity concept, provides a practical tool for optimizing drilling operations based on the viscoelasticity of drilling fluids.


2021 ◽  
Vol 73 (05) ◽  
pp. 63-64
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 203147, “Investigating Hole-Cleaning Fibers’ Mechanism To Improve Cutting Carrying Capacity and Comparing Their Effectiveness With Common Polymeric Pills,” by Mohammad Saeed Karimi Rad, Mojtaba Kalhor Mohammadi, SPE, and Kourosh Tahmasbi Nowtarki, International Drilling Fluids, prepared for the 2020 Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, held virtually 9–12 November. The paper has not been peer reviewed. Hole cleaning in deviated wells is more challenging than in vertical wells because of the boycott effect or the eccentricity of the drillpipe. Poor hole cleaning can result in problems such as borehole packoff or excessive equivalent circulating density. The complete paper investigates a specialized fibrous material (Fiber 1) for hole-cleaning characteristics. The primary goal is to identify significant mechanisms of hole-cleaning fibers and their merits compared with polymeric high-viscosity pills. Hole-Cleaning Indices Based on a review of the literature, most effective parameters regarding hole cleaning in different well types were investigated. These parameters can be classified into the following five categories: - Well design (e.g., hole angle, drillpipe eccentricity, well trajectory) - Drilling-fluid properties (e.g., gel strength, mud weight) - Formation properties (e.g., lithology, cutting specific gravity, cuttings size and shape) - Hydraulic optimizations (e.g., flow regime, nozzle size, number of nozzles) - Drilling practices (e.g., drillpipe rotation speed, wellbore tortuosity, bit type, rate of penetration, pump rate) In this research, rheological parameters and parameters of the Herschel-Bulkley rheological model are considered to be optimization inputs to increase hole-cleaning efficiency of commonly used pills in drilling operations. The complete paper offers a detailed discussion of both the importance of flow regime and the role of the Herschel-Bulkley rheological model in reaching a better prognosis of drilling-fluid behavior at low shear rates. The properties of the fibrous hole-cleaning agent used in the complete paper are provided in Table 1. Test Method Two series of tests were performed. The medium of the first series is drilling water, with the goal of evaluating the efficiency of Fiber 1 in fresh pills. The second series of tests was per-formed with a simple polymeric mud as a medium common in drilling operations. Formulations and rheological properties of both test series are provided in Tables 4 and 5 of the complete paper, respectively.


2021 ◽  
Author(s):  
Mehrdad Gharib Shirangi ◽  
Roger Aragall ◽  
Reza Ettehadi ◽  
Roland May ◽  
Edward Furlong ◽  
...  

Abstract In this work, we present our advances to develop and apply digital twins for drilling fluids and associated wellbore phenomena during drilling operations. A drilling fluid digital twin is a series of interconnected models that incorporate the learning from the past historical data in a wide range of operational settings to determine the fluids properties in realtime operations. From several drilling fluid functionalities and operational parameters, we describe advancements to improve hole cleaning predictions and high-pressure high-temperature (HPHT) rheological properties monitoring. In the hole cleaning application, we consider the Clark and Bickham (1994) approach which requires the prediction of the local fluid velocity above the cuttings bed as a function of operating conditions. We develop accurate computational fluid dynamics (CFD) models to capture the effects of rotation, eccentricity and bed height on local fluid velocities above cuttings bed. We then run 55,000 CFD simulations for a wide range of operational settings to generate training data for machine learning. For rheology monitoring, thousands of lab experiment records are collected as training data for machine learning. In this case, the HPHT rheological properties are determined based on rheological measurement in the American Petroleum Institute (API) condition together with the fluid type and composition data. We compare the results of application of several machine learning algorithms to represent CFD simulations (for hole cleaning application) and lab experiments (for monitoring HPHT rheological properties). Rotating cross-validation method is applied to ensure accurate and robust results. In both cases, models from the Gradient Boosting and the Artificial Neural Network algorithms provided the highest accuracy (about 0.95 in terms of R-squared) for test datasets. With developments presented in this paper, the hole cleaning calculations can be performed more accurately in real-time, and the HPHT rheological properties of drilling fluids can be estimated at the rigsite before performing the lab experiments. These contributions advance digital transformation of drilling operations.


2018 ◽  
Author(s):  
Ζήσης Βρύζας

Η γεώτρηση αποτελεί την πλέον δαπανηρή εργασία σε μια καμπάνια εξεύρεσης και παραγωγής υδρογονανθράκων. Πέραν αυτού συνιστά και την μοναδική διεργασία που δίνει τη δυνατότητα ακριβούς προσδιορισμού των αποθεμάτων στο υπέδαφος. Ο πολφός (γεωτρητικά ρευστά) είναι το ‘αίμα’ της γεώτρησης: παρέχει πίεση, μεταφορά τριμμάτων/θραυσμάτων από τον πυθμένα του φρέατος, ψύξη και λίπανση κοπτικού και στήλης, καθώς επίσης διατηρεί τα θραύσματα εν αιωρήσει όταν υπάρχει διακοπή της κυκλοφορίας. Ως ρευστό γεώτρησης (drilling fluid) χρησιμοποιείται συνήθως ένα αιώρημα πηλού και άλλων υλικών σε νερό. Τα ρευστά διάτρησης με βάση το νερό αποτελούνται από α) νερό, το οποίο αποτελεί την συνεχή φάση και παρέχει το αρχικό ιξώδες (φρέσκο ή θαλασσινό), β) ενεργά στερεά για την ενίσχυση του ιξώδους και του σημείου διαρροής (μπεντονίτης, που συνιστάται στην περίπτωση του φρέσκου νερού και ατταπουλγίτης, αμίαντος ή σιπιόλιθος, που συνιστώνται στην περίπτωση του θαλασσινού νερού), και γ) αδρανή στερεά για την επίτευξη της απαιτούμενης πυκνότητας (βαρύτης, θειούχος μόλυβδος, σιδηρομεταλλεύματα ή χαλαζιακά υλικά).Τα γεωτρητικά ρευστά αποτελούν το 10-20% του συνολικού κόστους κατά την διάρκεια μιας γεώτρησης. Ποσοστό πολύ υψηλό όταν μιλάμε για επενδύσεις εκκατομυρίων δολλαρίων. Λόγω των ολοένα πιο βαθιών αλλά και περίπλοκων γεωλογικών σχηματισμών υπάρχει τεράστια ανάγκη από την πετρελαική βιομηχανία για καινούργια και περισσότερο αποδοτικά γεωτρητικά ρευστά τα οποία θα μπορούν να ανταπεξέλθουν στα ολοένα και πιο απαιτητικά περβάλλοντα θερμοκρασίας και πίεσης. Τα σημαντικότερα ζητήματα τα οποία καλούνται να ανταποκριθούν τα ρευστά είναι οι ολοένα αυξανόμενες συνθήκες πίεσης και θερμοκρασίας στο υπέδαφος που είναι απόροια της αναζήτησης υδρογονανθράκων σε πλέον δύσβατες περιοχές με μεγαλύτερα βάθη που αυξάνουν τους κινδύνους και το κόστος για μια γεώτρηση. Η απώλεια ρευστού κυκλοφορίας (fluid loss) είναι ένα από τα σημαντικότερα και πλέον δαπανηρά προβλήματα κατά την διαδικασία μιας γεώτρησης. Ως απώλεια ρευστού κυκλοφορίας ορίζεται η συνολική ή μερική απώλεια των ρευστών της γεώτρησης σε εξαιρετικά διαπερατές ζώνες (porous sands), σε σπηλαιώδεις σχηματισμούς (cavernous zones), σε φυσικές ρηγματώσεις (natural fractures) και σε ρηγματώσεις προκαλούμενες κατά τη διάτρηση (induced fractures). Τα τελευταία χρόνια έχουν γίνει αρκετές προσπάθειες για την βελτίωση των γεωτρητικών ρευστών με την χρήση νανοσωματιδίων, τα οποία έχουν τη δυνατότητα να βελτιώσουν τις ιδιότητες των γεωτρητικών ρευστών όταν προστίθενται ακόμα και σε χαμηλές συγκεντρώσεις (<1 wt%). Οι μοναδικές τους ιδιότητες σχετίζονται με το μικρό τους μέγεθος και επομένως τον εξαιρετικά μεγάλο λόγο επιφάνειας προς όγκο.Σε αυτή την εργασία, εξετάστηκαν διάφορα εμπορικά νανοσωματίδια (Fe2O3, Fe3O4, SiO2) καθώς επίσης συντέθηκαν, με την μέθοδο της συγκαταβύθισης, νανοσωματιδία μαγνητίτη (custom-made Fe3O4), με και χωρίς επικάλυψη κιτρικού οξέος, τα οποία ερευνήθηκαν ως προς την ικανότητα τους να βελτιώσουν τις ρεολογικές ιδιότητες και την απώλεια ρευστών σε αιωρήματα μπετονίτη. Προκειμένου να χαρακτηρισθούν φυσικοχημικά τα αιωρήματα υπέστησαν ξήρανση με κοκκοποίηση σε θερμοκρασία υγρού Ν2 και κρυοξήρανση. Η μορφολογία, η κρυσταλλική δομή και οι επιφανειακές ομάδες των ξηρών κόνεων εξετάσθηκαν με ηλεκτρονική μικροσκοπία HR-TΕM, περίθλαση ακτίνων Χ (XRD), φυσική ρόφηση Ν2 και φασματοσκοπία FTIR. Οι αλληλεπιδράσεις των σωματιδίων μπετονίτη με τα νανοσωματίδια και οι διάφορες δομές που δημιουργούνται και πως τελικά αυτές επηρεάζουν τις ρεολογικές ιδιότητες των αιωρημάτων εξετάστηκαν με το HR-TEM στους 25°C και 60°C. Με βάση τις εικόνες από το HR-TEM, ένα μοντέλο αλληλεπιδράσεων μεταξύ των διαφορετικών τύπων νανοσωματιδίων και σωματιδίων μπετονίτη δημιουργήθηκε για πρώτη φορά για τέτοια αιωρήματα. Οι ρεολογικές ιδιότητες των παραγόμενων δειγμάτων εξετάστηκαν και σε συνθήκες ατμοσφαιρικής πίεσης (μέχρι 70°C) με την χρήση περιστροφικού ιξωδόμετρου (Grace M3600-Couette type geometry) αλλά και σε συνθήκες υψηλής πίεσης και θερμοκρασίας (69 bar-121°C) (Chandler 7600 HPHT viscometer). Το μοντέλο Herschel-Bulkley χρησιμοποιήθηκε για να περιγράψει τη μεταβολή του ιξώδους με τη μεταβολή των ρεολογικών παραμέτρων δείχνοντας εξαιρετική εφαρμογή για τις διαφορετικές πειραματικές μετρήσεις με συντελεστές συσχέτισης (R2) >0.99 σε όλες τις περιπτώσεις. Οι ρεολογικές μετρήσεις έδειξαν ότι η προσθήκη των νανοσωματιδίων βελτιώνει σημαντικά τις ρεολογικές ιδιότητες των αιωρημάτων μπετονίτη στις διάφορες συνθήκες πίεσης και θερμοκρασίας. Οι απώλειες ρευστών (fluid loss) εξετάστηκαν με φιλτροπρέσες υψηλής πίεσης και θερμοκρασίας (20.7 bar και 121°C) οι οποίες υπολογίζουν τον ρυθμό διήθησης του πολφού μέσω του χρησιμοποιούμενου φίλτρου (κεραμικός δίσκος). Η μεγαλύτερη μείωση στην απώλεια ρευστών επιτεύχθηκε για το δείγμα που περιείχε 0.5 wt% custom-made Fe3O4 με μείωση -40% σε σχέση με το αρχικό δείγμα μπετονίτη που δείχνει την τεράστια ικανότητα των νανοσωματιδίων να βελτιώσουν σημαντικά τις απώλειες ρευστών ακόμα και σε τόσο μικρές συγκεντρώσεις. Τέλος, εξετάστηκε η ικανότητα των παραγόμενων ρευστών να αλλάζουν τις ρεολογικές τους ιδιότητες υπό την επίδραση διάφορων μαγνητικών πεδίων (μέχρι 0.7 Tesla). Τα αποτελέσματα έδειξαν ότι τα καινούργια γεωτρητικά ρευστά έχουν την ικανότητα να αυξάνουν την τάση διολίσθησης (yield stress) έως και 300% σε σχέση με αυτή που μετρήθηκε χωρίς την εφαρμογή μαγνητικού πεδίου. Αυτό είναι κάτι πολύ σημαντικό που επιτρέπει την χρήση έξυπνων ρευστών (smart drilling fluids) τα οποία μπορούν να εξοικονομήσουν και χρόνο αλλά και κόστη κατά την διάρκεια μιας γεώτρησης.Τα νανοσωματίδια δείχνουν πολλές ελπιδοφόρες δυνατότητες σε εφαρμογές γεωτρήσεων αφού έχουν τη δυνατότητα να βελτιώσουν ή και να λύσουν το πρόβλημα της απώλειας ρευστών, όταν προστίθενται ακόμα και σε χαμηλές συγκεντρώσεις (>0.5 wt%), ενώ ταυτόχρονα βελτιστοποιούν τις ρεολογικές ιδιότητες των γεωτρητικών ρευστών. Η χρήση τους για την ανάπτυξη βελτιωμένων γεωτρητικών ρευστών υπόσχεται να αλλάξει την βιομηχανία των γεωτρήσεων και να την βοηθήσει να εξορυχθούν πολύπλοκοι γεωλογικοί σχηματισμοί πιο αποδοτικά αλλά και οικονομικά.


2007 ◽  
Vol 4 (1) ◽  
pp. 103 ◽  
Author(s):  
Ozcan Baris ◽  
Luis Ayala ◽  
W. Watson Robert

The use of foam as a drilling fluid was developed to meet a special set of conditions under which other common drilling fluids had failed. Foam drilling is defined as the process of making boreholes by utilizing foam as the circulating fluid. When compared with conventional drilling, underbalanced or foam drilling has several advantages. These advantages include: avoidance of lost circulation problems, minimizing damage to pay zones, higher penetration rates and bit life. Foams are usually characterized by the quality, the ratio of the volume of gas, and the total foam volume. Obtaining dependable pressure profiles for aerated (gasified) fluids and foam is more difficult than for single phase fluids, since in the former ones the drilling mud contains a gas phase that is entrained within the fluid system. The primary goal of this study is to expand the knowledge-base of the hydrodynamic phenomena that occur in a foam drilling operation. In order to gain a better understanding of foam drilling operations, a hydrodynamic model is developed and run at different operating conditions. For this purpose, the flow of foam through the drilling system is modeled by invoking the basic principles of continuum mechanics and thermodynamics. The model was designed to allow gas and liquid flow at desired volumetric flow rates through the drillstring and annulus. Parametric studies are conducted in order to identify the most influential variables in the hydrodynamic modeling of foam flow. 


Sign in / Sign up

Export Citation Format

Share Document