Quantifying monthly water balance to estimate water deficit in Mayurakshi River basin of Eastern India

Author(s):  
Swades Pal ◽  
Susanta Mahato ◽  
Biplab Giri ◽  
Deep Narayan Pandey ◽  
Pawan Kumar Joshi
2019 ◽  
Vol 40 (6) ◽  
pp. 3021-3035 ◽  
Author(s):  
Rosane B. L. Cavalcante ◽  
Paulo R. M. Pontes ◽  
Renata G. Tedeschi ◽  
Cláudia P. W. Costa ◽  
Douglas B. S. Ferreira ◽  
...  

2020 ◽  
pp. 102-109
Author(s):  
D.KH. DOMULLODZHANOV ◽  
◽  
R. RAHMATILLOEV

The article presents the results of the field studies and observations that carried out on the territory of the hilly, low-mountain and foothill agro landscapes of the Kyzylsu-yuzhnaya (Kyzylsu-Southern) River Basin of Tajikistan. Taking into account the high-altitude location of households and the amount of precipitation in the river basin, the annual volumes of water accumulated with the use of low-cost systems of collection and storage of precipitation have been clarified. The amount of water accumulated in the precipitation collection and storage systems has been established, the volume of water used for communal and domestic needs,the watering of livestock and the amount of water that can be used to irrigate crops in the have been determined. Possible areas of irrigation of household plots depending on the different availability of precipitation have been determined. It has been established that in wet years (with precipitation of about 10%) the amount of water collected using drip irrigation will be sufficient for irrigation of 0.13 hectares, and in dry years (with 90% of precipitation) it will be possible to irrigate only 0.03 ha of the household plot. On the basis of the basin, the total area of irrigation in wet years can be 4497 ha, and in dry years only 1087 ha. Taking into account the forecasts of population growth by 2030 and an increase in the number of households, the total area of irrigation of farmlands in wet years may reach 5703 hectares,and in dry years – 1379 hectares. Growing crops on household plots under irrigation contributes to a significant increase in land productivity and increases the efficiency of water use of the Kyzylsu-yuzhnaya basin.


2020 ◽  
Vol 186 ◽  
pp. 109544 ◽  
Author(s):  
Thundorn Okwala ◽  
Sangam Shrestha ◽  
Suwas Ghimire ◽  
S. Mohanasundaram ◽  
Avishek Datta

2021 ◽  
Vol 36 ◽  
pp. 100837
Author(s):  
Mou Leong Tan ◽  
Yi Lin Tew ◽  
Kwok Pan Chun ◽  
Narimah Samat ◽  
Shazlyn Milleana Shaharudin ◽  
...  

2011 ◽  
Vol 408 (1-2) ◽  
pp. 19-34 ◽  
Author(s):  
J.D. Lenters ◽  
G.J. Cutrell ◽  
E. Istanbulluoglu ◽  
D.T. Scott ◽  
K.S. Herrman ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaowan Liu ◽  
Dingzhi Peng ◽  
Zongxue Xu

Quantifying the impacts of climate changes and human activities on runoff has received extensive attention, especially for the regions with significant elevation difference. The contributions of climate changes and human activities to runoff were analyzed using rainfall-runoff relationship, double mass curve, slope variation, and water balance method during 1961–2010 at the Jinsha River basin, China. Results indicate that runoff at upstream and runoff at midstream are both dominated by climate changes, and the contributions of climate changes to runoff are 63%~72% and 53%~68%, respectively. At downstream, climate changes account for only 13%~18%, and runoff is mainly controlled by human activities, contributing 82%~87%. The availability and stability of results were compared and analyzed in the four methods. Results in slope variation, double mass curve, and water balance method except rainfall-runoff relationship method are of good agreement. And the rainfall-runoff relationship, double mass curve, and slope variation method are all of great stability. The four methods and availability evaluation of them could provide a reference to quantification in the contributions of climate changes and human activities to runoff at similar basins in the future.


Sign in / Sign up

Export Citation Format

Share Document