Breeding strategies to consolidate canola among the main crops for biofuels

Euphytica ◽  
2021 ◽  
Vol 218 (1) ◽  
Author(s):  
Bruno Galvêas Laviola ◽  
Erina Vitório Rodrigues ◽  
Adriano dos Santos ◽  
Larissa Pereira Ribeiro Teodoro ◽  
Leonardo Azevedo Peixoto ◽  
...  
Keyword(s):  
2019 ◽  
Vol 08 (04) ◽  
Author(s):  
Fotini Trikka ◽  
Sofia Michailidou ◽  
Antonios M. Makris ◽  
Anagnostis Argiriou

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jade Carver ◽  
Morgan Meidell ◽  
Zachary J. Cannizzo ◽  
Blaine D. Griffen

AbstractTwo common strategies organisms use to finance reproduction are capital breeding (using energy stored prior to reproduction) and income breeding (using energy gathered during the reproductive period). Understanding which of these two strategies a species uses can help in predicting its population dynamics and how it will respond to environmental change. Brachyuran crabs have historically been considered capital breeders as a group, but recent evidence has challenged this assumption. Here, we focus on the mangrove tree crab, Aratus pisonii, and examine its breeding strategy on the Atlantic Florida coast. We collected crabs during and after their breeding season (March–October) and dissected them to discern how energy was stored and utilized for reproduction. We found patterns of reproduction and energy storage that are consistent with both the use of stored energy (capital) and energy acquired (income) during the breeding season. We also found that energy acquisition and storage patterns that supported reproduction were influenced by unequal tidal patterns associated with the syzygy tide inequality cycle. Contrary to previous assumptions for crabs, we suggest that species of crab that produce multiple clutches of eggs during long breeding seasons (many tropical and subtropical species) may commonly use income breeding strategies.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 184
Author(s):  
Giuseppe Andolfo ◽  
Nunzio D’Agostino ◽  
Luigi Frusciante ◽  
Maria Raffaella Ercolano

Tomato (Solanum lycopersicum L.) is a model system for studying the molecular basis of resistance in plants. The investigation of evolutionary dynamics of tomato resistance (R)-loci provides unique opportunities for identifying factors that promote or constrain genome evolution. Nucleotide-binding domain and leucine-rich repeat (NB-LRR) receptors belong to one of the most plastic and diversified families. The vast amount of genomic data available for Solanaceae and wild tomato relatives provides unprecedented insights into the patterns and mechanisms of evolution of NB-LRR genes. Comparative analysis remarked a reshuffling of R-islands on chromosomes and a high degree of adaptive diversification in key R-loci induced by species-specific pathogen pressure. Unveiling NB-LRR natural variation in tomato and in other Solanaceae species offers the opportunity to effectively exploit genetic diversity in genomic-driven breeding programs with the aim of identifying and introducing new resistances in tomato cultivars. Within this motivating context, we reviewed the repertoire of NB-LRR genes available for tomato improvement with a special focus on signatures of adaptive processes. This issue is still relevant and not thoroughly investigated. We believe that the discovery of mechanisms involved in the generation of a gene with new resistance functions will bring great benefits to future breeding strategies.


2016 ◽  
Vol 48 (8) ◽  
pp. 1729-1738 ◽  
Author(s):  
G. M. Parra-Bracamonte ◽  
N. Lopez-Villalobos ◽  
S. T. Morris ◽  
A. M. Sifuentes-Rincón ◽  
L. A. Lopez-Bustamante

2005 ◽  
Vol 41 (4) ◽  
pp. 475-489 ◽  
Author(s):  
VINCENT LEBOT ◽  
ANTON IVANCIC ◽  
KUTTOLAMADATHIL ABRAHAM

This paper addresses the preservation and use of minor root crop genetic resources, mostly aroids and yams. Conservation is fraught with difficulty: ex situ collections are expensive to maintain and methods for on-farm conservation have not been studied. Conventional breeding strategies present serious limitations when applied to these species. Furthermore, the evaluation and distribution of improved material are as problematical as its conservation. The similarities shared by these species regarding their domestication, breeding constraints and improvement strategies as well as farmers' needs, are briefly reviewed. Based on these biological constraints, we propose a practical alternative to current conservation and breeding strategies. This approach focuses on the geographical distribution of allelic diversity rather than localized ex situ and/or in situ preservation of genotypes. The practical steps are described and discussed. First, a core sample representing the useful diversity of the species is assembled from accessions selected for their diverse and distant geographic origins, wide genetic distances, quality, agronomic performances and functional sexuality. Second, the geographical distribution of this core sample, in vitro via a transit centre, allows the direct use of selected genotypes by farmers or for breeding purposes. Third, the distribution of genes is realized in the form of clones resulting from segregating progenies and, fourth, farmers select clones with local adaptation.


2011 ◽  
Vol 26 (1) ◽  
pp. 198-206 ◽  
Author(s):  
Pierre-François Pélisson ◽  
Marie-Claude Bel-Venner ◽  
Benjamin Rey ◽  
Lorraine Burgevin ◽  
François Martineau ◽  
...  

Author(s):  
Kelly M. Monja-Mio ◽  
Miguel A. Herrera-Alamillo ◽  
Lorenzo F. Sánchez-Teyer ◽  
Manuel L. Robert

Sign in / Sign up

Export Citation Format

Share Document