scholarly journals The Tomato Interspecific NB-LRR Gene Arsenal and Its Impact on Breeding Strategies

Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 184
Author(s):  
Giuseppe Andolfo ◽  
Nunzio D’Agostino ◽  
Luigi Frusciante ◽  
Maria Raffaella Ercolano

Tomato (Solanum lycopersicum L.) is a model system for studying the molecular basis of resistance in plants. The investigation of evolutionary dynamics of tomato resistance (R)-loci provides unique opportunities for identifying factors that promote or constrain genome evolution. Nucleotide-binding domain and leucine-rich repeat (NB-LRR) receptors belong to one of the most plastic and diversified families. The vast amount of genomic data available for Solanaceae and wild tomato relatives provides unprecedented insights into the patterns and mechanisms of evolution of NB-LRR genes. Comparative analysis remarked a reshuffling of R-islands on chromosomes and a high degree of adaptive diversification in key R-loci induced by species-specific pathogen pressure. Unveiling NB-LRR natural variation in tomato and in other Solanaceae species offers the opportunity to effectively exploit genetic diversity in genomic-driven breeding programs with the aim of identifying and introducing new resistances in tomato cultivars. Within this motivating context, we reviewed the repertoire of NB-LRR genes available for tomato improvement with a special focus on signatures of adaptive processes. This issue is still relevant and not thoroughly investigated. We believe that the discovery of mechanisms involved in the generation of a gene with new resistance functions will bring great benefits to future breeding strategies.

Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 808
Author(s):  
Laura Pérez-Lago ◽  
Teresa Aldámiz-Echevarría ◽  
Rita García-Martínez ◽  
Leire Pérez-Latorre ◽  
Marta Herranz ◽  
...  

A successful Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variant, B.1.1.7, has recently been reported in the UK, causing global alarm. Most likely, the new variant emerged in a persistently infected patient, justifying a special focus on these cases. Our aim in this study was to explore certain clinical profiles involving severe immunosuppression that may help explain the prolonged persistence of viable viruses. We present three severely immunosuppressed cases (A, B, and C) with a history of lymphoma and prolonged SARS-CoV-2 shedding (2, 4, and 6 months), two of whom finally died. Whole-genome sequencing of 9 and 10 specimens from Cases A and B revealed extensive within-patient acquisition of diversity, 12 and 28 new single nucleotide polymorphisms, respectively, which suggests ongoing SARS-CoV-2 replication. This diversity was not observed for Case C after analysing 5 sequential nasopharyngeal specimens and one plasma specimen, and was only observed in one bronchoaspirate specimen, although viral viability was still considered based on constant low Ct values throughout the disease and recovery of the virus in cell cultures. The acquired viral diversity in Cases A and B followed different dynamics. For Case A, new single nucleotide polymorphisms were quickly fixed (13–15 days) after emerging as minority variants, while for Case B, higher diversity was observed at a slower emergence: fixation pace (1–2 months). Slower SARS-CoV-2 evolutionary pace was observed for Case A following the administration of hyperimmune plasma. This work adds knowledge on SARS-CoV-2 prolonged shedding in severely immunocompromised patients and demonstrates viral viability, noteworthy acquired intra-patient diversity, and different SARS-CoV-2 evolutionary dynamics in persistent cases.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4840 ◽  
Author(s):  
Kai Wei ◽  
Tingting Zhang ◽  
Lei Ma

Housekeeping genes are ubiquitously expressed and maintain basic cellular functions across tissue/cell type conditions. The present study aimed to develop a set of pig housekeeping genes and compare the structure, evolution and function of housekeeping genes in the human–pig lineage. By using RNA sequencing data, we identified 3,136 pig housekeeping genes. Compared with human housekeeping genes, we found that pig housekeeping genes were longer and subjected to slightly weaker purifying selection pressure and faster neutral evolution. Common housekeeping genes, shared by the two species, achieve stronger purifying selection than species-specific genes. However, pig- and human-specific housekeeping genes have similar functions. Some species-specific housekeeping genes have evolved independently to form similar protein active sites or structure, such as the classical catalytic serine–histidine–aspartate triad, implying that they have converged for maintaining the basic cellular function, which allows them to adapt to the environment. Human and pig housekeeping genes have varied structures and gene lists, but they have converged to maintain basic cellular functions essential for the existence of a cell, regardless of its specific role in the species. The results of our study shed light on the evolutionary dynamics of housekeeping genes.


Author(s):  
Michael Doebeli

This chapter focuses on evolutionary branching in niche position due to frequency-dependent competition. When the majority phenotype of a population is competing for one type of resource, selection may favor minority phenotypes that consume different types of resources, which could result in phenotypic differentiation and divergence. The idea of divergence due to competition is also the basis for the well-known concept of ecological character displacement, although here the focus is not so much on the origin of diversity arising in a single species, but rather on the evolutionary dynamics of existing diversity between different and already established species. Ecological character displacement embodies the possibility that competition between species can drive divergence in characters determining resource use. However, there are alternative evolutionary scenarios for phenotypic diversification. In the context of resource competition, one such alternative is that individuals diversify their diet by evolving a wider niche.


2020 ◽  
Vol 375 (1808) ◽  
pp. 20190598 ◽  
Author(s):  
Laura Grieneisen ◽  
Amanda L. Muehlbauer ◽  
Ran Blekhman

Recent comparative studies have found evidence consistent with the action of natural selection on gene regulation across primate species. Other recent work has shown that the microbiome can regulate host gene expression in a wide range of relevant tissues, leading to downstream effects on immunity, metabolism and other biological systems in the host. In primates, even closely related host species can have large differences in microbiome composition. One potential consequence of these differences is that host species-specific microbial traits could lead to differences in gene expression that influence primate physiology and adaptation to local environments. Here, we will discuss and integrate recent findings from primate comparative genomics and microbiome research, and explore the notion that the microbiome can influence host evolutionary dynamics by affecting gene regulation across primate host species. This article is part of the theme issue ‘The role of the microbiome in host evolution’.


2020 ◽  
Vol 111 (6) ◽  
pp. 531-538 ◽  
Author(s):  
Jennifer R Mandel ◽  
Adam J Ramsey ◽  
Jacob M Holley ◽  
Victoria A Scott ◽  
Dviti Mody ◽  
...  

Abstract Plant mitochondria and plastids display an array of inheritance patterns and varying levels of heteroplasmy, where individuals harbor more than 1 version of a mitochondrial or plastid genome. Organelle inheritance in plants has the potential to be quite complex and can vary with plant growth, development, and reproduction. Few studies have sought to investigate these complicated patterns of within-individual variation and inheritance using experimental crosses in plants. We carried out crosses in carrot, Daucus carota L. (Apiaceae), which has previously been shown to exhibit organellar heteroplasmy. We used mitochondrial and plastid markers to begin to disentangle the patterns of organellar inheritance and the fate of heteroplasmic variation, with special focus on cases where the mother displayed heteroplasmy. We also investigated heteroplasmy across the plant, assaying leaf samples at different development stages and ages. Mitochondrial and plastid paternal leakage was rare and offspring received remarkably similar heteroplasmic mixtures to their heteroplasmic mothers, indicating that heteroplasmy is maintained over the course of maternal inheritance. When offspring did differ from their mother, they were likely to exhibit a loss of the genetic variation that was present in their mother. Finally, we found that mitochondrial variation did not vary significantly over plant development, indicating that substantial vegetative sorting did not occur. Our study is one of the first to quantitatively investigate inheritance patterns and heteroplasmy in plants using controlled crosses, and we look forward to future studies making use of whole genome information to study the complex evolutionary dynamics of plant organellar genomes.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Yu Yang ◽  
Jing Wang ◽  
Haiyan Wen ◽  
Hengchuan Liu

We have developed novel Bio-Plex assays for simultaneous detection ofBacillus anthracis, Yersinia pestis, Brucella spp., Francisella tularensis,andBurkholderia pseudomallei. Universal primers were used to amplify highly conserved region located within the 16S rRNA amplicon, followed by hybridized to pathogen-specific probes for identification of these five organisms. The other assay is based on multiplex PCR to simultaneously amplify five species-specific pathogen identification-targeted regions unique to individual pathogen. Both of the two arrays are validated to be flexible and sensitive for simultaneous detection of bioterrorism bacteria. However, universal primer PCR-based array could not identifyBacillus anthracis, Yersinia pestis,andBrucella spp.at the species level because of the high conservation of 16S rDNA of the same genus. The two suspension arrays can be utilized to detectBacillus anthracissterne spore andYersinia pestisEV76 from mimic “write powder” samples, they also proved that the suspension array system will be valuable tools for diagnosis of bacterial biothreat agents in environmental samples.


2018 ◽  
Vol 35 (4) ◽  
pp. 925-941 ◽  
Author(s):  
Kevin H -C Wei ◽  
Sarah E Lower ◽  
Ian V Caldas ◽  
Trevor J S Sless ◽  
Daniel A Barbash ◽  
...  

Abstract Simple satellites are tandemly repeating short DNA motifs that can span megabases in eukaryotic genomes. Because they can cause genomic instability through nonallelic homologous exchange, they are primarily found in the repressive heterochromatin near centromeres and telomeres where recombination is minimal, and on the Y chromosome, where they accumulate as the chromosome degenerates. Interestingly, the types and abundances of simple satellites often vary dramatically between closely related species, suggesting that they turn over rapidly. However, limited sampling has prevented detailed understanding of their evolutionary dynamics. Here, we characterize simple satellites from whole-genome sequences generated from males and females of nine Drosophila species, spanning 40 Ma of evolution. We show that PCR-free library preparation and postsequencing GC-correction better capture satellite quantities than conventional methods. We find that over half of the 207 simple satellites identified are species-specific, consistent with previous descriptions of their rapid evolution. Based on a maximum parsimony framework, we determined that most interspecific differences are due to lineage-specific gains. Simple satellites gained within a species are typically a single mutation away from abundant existing satellites, suggesting that they likely emerge from existing satellites, especially in the genomes of satellite-rich species. Interestingly, unlike most of the other lineages which experience various degrees of gains, the lineage leading up to the satellite-poor D. pseudoobscura and D. persimilis appears to be recalcitrant to gains, providing a counterpoint to the notion that simple satellites are universally rapidly evolving.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Elissavet Kentepozidou ◽  
Sarah J. Aitken ◽  
Christine Feig ◽  
Klara Stefflova ◽  
Ximena Ibarra-Soria ◽  
...  

Abstract Background CTCF binding contributes to the establishment of a higher-order genome structure by demarcating the boundaries of large-scale topologically associating domains (TADs). However, despite the importance and conservation of TADs, the role of CTCF binding in their evolution and stability remains elusive. Results We carry out an experimental and computational study that exploits the natural genetic variation across five closely related species to assess how CTCF binding patterns stably fixed by evolution in each species contribute to the establishment and evolutionary dynamics of TAD boundaries. We perform CTCF ChIP-seq in multiple mouse species to create genome-wide binding profiles and associate them with TAD boundaries. Our analyses reveal that CTCF binding is maintained at TAD boundaries by a balance of selective constraints and dynamic evolutionary processes. Regardless of their conservation across species, CTCF binding sites at TAD boundaries are subject to stronger sequence and functional constraints compared to other CTCF sites. TAD boundaries frequently harbor dynamically evolving clusters containing both evolutionarily old and young CTCF sites as a result of the repeated acquisition of new species-specific sites close to conserved ones. The overwhelming majority of clustered CTCF sites colocalize with cohesin and are significantly closer to gene transcription start sites than nonclustered CTCF sites, suggesting that CTCF clusters particularly contribute to cohesin stabilization and transcriptional regulation. Conclusions Dynamic conservation of CTCF site clusters is an apparently important feature of CTCF binding evolution that is critical to the functional stability of a higher-order chromatin structure.


Author(s):  
María Soledad Miró ◽  
Cecilia Vigezzi ◽  
Emilse Rodriguez ◽  
Paula Alejandra Icely ◽  
Juan Pablo Caeiro ◽  
...  

In recent years, the rise of human fungal infections has been associated to lack of early diagnosis, uneffective antifungal therapies and vaccines. Disturbance in immune homeostasis, which can be caused by medical interventions and immunosuppression induced by disease, are well known as risk factors for these pathologies. Cells of the innate immune system are equipped with surface and cytoplasmic receptors for recognition of microorganisms called pattern recognition receptors (PRRs). PRRs recognize specific pathogen-associated molecular patterns (PAMPs) that are crucial for the activation and killing of pathogenic fungi by immune system.  This review will outline the PRRs and cells required for effective antifungal immunity, with a special focus on the major antifungal cytokine IL-17. Finally, naturally occurring human mutations involved in the increased susceptibility to fungal infections are also discussed


Author(s):  
Michel Baguette ◽  
Joris Bertrand ◽  
Virginie M. Stevens ◽  
Bertrand Schatz

Adaptive radiations occur mostly in response to environmental variation through the evolution of key eco-morphological innovations that allow emerging species to occupy new ecological niches. However, rapid phenotypic evolution and the evolution of key novelties are likely to also occur when a couple or few species are engaged into narrow ecological interactions. To demonstrate coevolution is a difficult task; only elusive evidences confirm that coevolution is a driver of speciation and diversification. Here we propose that the adaptive radiation of the Mediterranean orchid genus Ophrys, which gave rise to ca. 350 species since the apparition of the genus is due to the particular co-evolutionary dynamics between these plants and their pollinators. We suggest that the pollination by sexual swindle used by Ophrys orchids is the main driver of this coevolution. Flowers of each Ophrys species mimic sexually receptive females of one particular insect species, mainly bees. Male bees are attracted by pseudo-pheromones emitted by Ophrys flowers that are similar to the sexual pheromones of their females. Males lured by the flower shape, color and hairiness attempt to copulate with the flower, which glues pollen on their bodies. Pollen is eventually transferred to the stigma of another flower of the same Ophrys species during similar copulation attempts. Three observations led us to propose the scenario of an asymmetric co-evolutionary relationship between Ophrys and their pollinators. Firstly, there is a strong intra-specific competition among Ophrys individuals for the attraction of their species-specific pollinators, which is due to the high learning and memorization abilities of bees that record the pheromone signatures of kin or of previously courted partner to avoid (further) copulation attempts. Mnemonic pollinators induce thus a strong selective pressure for variation in the pseudo-pheromones emitted by individual flowers, which will potentially generate shifts in pollinator species, and hence Ophrys speciation. These pollinator shifts are adaptive for new Ophrys species because they may benefit from a competitor-free space. Secondly, such shifts in pollinator species are due to the random crossing of peaks in the olfactory landscape of the pollinator guild that is syntopic to each particular Ophrys population. This selective process on individual, random variation in pseudo-pheromone bouquets is followed by directional selection on flower phenotypes that will reinforce the attraction of the new pollinator. Thirdly, pollinators use the pseudo-pheromones emitted by Ophrys to locate suitable habitats from a distance within complex landscapes. Pollinators stay fixed for a while in these habitats by the local diversity of pseudo-pheromones, which increases their probability of encounter with a receptive female and hence the reproduction probability of both sexes. Conversely, pollinators disperse out of small suitable habitats once they have memorized the local diversity of sexual pseudo-pheromone bouquet or if fecundated Ophrys flowers repel pollinators, which decreases the probability of geitonogamy (plant advantage) but limit pollinator mating with locally emergent insect females, thus limiting inbreeding and favoring gene flow (pollinator advantage). Finally, we propose several research avenues that emerged according to this scenario of adaptive radiation by assymetric coevolution between Ophrys species and their pollinators.


Sign in / Sign up

Export Citation Format

Share Document