Biochemical Fingerprint of Greek Sideritis spp.: Implications for Potential Drug Discovery and Advanced Breeding Strategies

2019 ◽  
Vol 08 (04) ◽  
Author(s):  
Fotini Trikka ◽  
Sofia Michailidou ◽  
Antonios M. Makris ◽  
Anagnostis Argiriou
2020 ◽  
Author(s):  
Sanaa Bardaweel

Recently, an outbreak of fatal coronavirus, SARS-CoV-2, has emerged from China and is rapidly spreading worldwide. As the coronavirus pandemic rages, drug discovery and development become even more challenging. Drug repurposing of the antimalarial drug chloroquine and its hydroxylated form had demonstrated apparent effectiveness in the treatment of COVID-19 associated pneumonia in clinical trials. SARS-CoV-2 spike protein shares 31.9% sequence identity with the spike protein presents in the Middle East Respiratory Syndrome Corona Virus (MERS-CoV), which infects cells through the interaction of its spike protein with the DPP4 receptor found on macrophages. Sitagliptin, a DPP4 inhibitor, that is known for its antidiabetic, immunoregulatory, anti-inflammatory, and beneficial cardiometabolic effects has been shown to reverse macrophage responses in MERS-CoV infection and reduce CXCL10 chemokine production in AIDS patients. We suggest that Sitagliptin may be beneficial alternative for the treatment of COVID-19 disease especially in diabetic patients and patients with preexisting cardiovascular conditions who are already at higher risk of COVID-19 infection.


Author(s):  
W. David Merryman ◽  
Joshua D. Hutcheson

Connective tissue makes up a large portion of our bodies, with collagen constituting ∼30% of the protein of connective tissue. Any tissue that undergoes fibrosis, either due to a genetic mutation or with age or use, typically falls into the ubiquitous category of ‘connective tissue fibrosis’. There are multiple potential contributors to connective tissue fibrosis; however, two dominate the literature — mechanical stress/strain and cytokines. Both stimuli lead to activation of fibroblast cells to a myofibroblast phenotype, the cellular hallmark of fibrotic disease. The myofibroblast phenotype is indicated by the expression of smooth muscle α-actin (αSMA), which associates with myosin to form actin-myosin contractile elements and generates intracellular force that is transduced to the ECM via cell membrane integrins.


2014 ◽  
Vol 111 (29) ◽  
pp. 10416-10421 ◽  
Author(s):  
D. Karthigeyan ◽  
S. Siddhanta ◽  
A. H. Kishore ◽  
S. S. R. R. Perumal ◽  
H. Agren ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 420-420
Author(s):  
Theresa L. Coetzer ◽  
Kubendran Naidoo ◽  
Pierre Durand

Abstract Malaria continues to be the most lethal protozoan disease of humans and the pathogenesis is fundamentally associated with the infection and hemolysis of red blood cells. Due to the emergence of resistance to most current drugs, there is an urgent need to develop a new generation of anti-parasitic agents. Drug development programs are expensive, long-term endeavors with numerous bottlenecks that exhibit a high rate of attrition. A major concern following the scientific and financial investment in drug discovery is the emergence of drug resistance. This is a well documented problem in malaria, and may be exceedingly rapid, classically demonstrated by pyrimethamine-resistant Plasmodium falciparum malaria. Strategies therefore that identify the most suitable drug target sites to minimize resistance are of major interest. In this study, a novel approach to select such sites based on the evolutionary rate of change is described, using the P. falciparum glycerol kinase (PfGK) as an example. The ratio of non-synonymous (dN) to synonymous (dS) nucleotide substitutions is defined as omega and was used to identify the patterns of evolutionary change at individual codons in the parasite and orthologous human (HsGK) coding sequences. The omega value of a particular codon reflects the evolutionary forces acting on the corresponding amino acid in the protein sequence. Natural selection will retain mutations that are beneficial to the organism and eliminate those that are detrimental. Omega values typically fall into three categories: positive selection (omega>1.0), neutral (omega=1.0), or purifying selection (omega<1.0). In this study, we quantified the relative intensity of selection and introduced the category of extreme purifying selection (omega≤0.1) to identify sites under the most severe evolutionary constraints. We have termed this novel approach to drug target selection “evolutionary patterning” (EP). EP describes the pattern of evolutionary change across a coding sequence, thereby identifying residues that make the most (omega<0.1) and least (omega>1.0) suitable drug target sites based on their potential to produce viable mutations. The EP approach was validated using the P. falciparum dihydrofolate reductase gene. Pyrimethamine targets the dihydrofolate reductase enzyme and five mutations conferring drug resistance have been identified. We hypothesized that none of these mutations would be under extreme purifying selection and our EP investigation confirmed this. EP analysis was thus applied to PfGK, which could be a potential novel drug target. PfGK is annotated as a putative glycerol kinase in the PlasmoDB database and to confirm this predicted function, the full length gene of 1506bp was cloned into a pGEX-4T2 expression vector, the recombinant GST-fusion protein was expressed in E coli and an in vitro assay showed that the enzyme was active and could phosphorylate glycerol. Glycerol-3-phosphate is a multifunctional metabolite that is essential for glycerolipid synthesis and also feeds into glycolysis, highlighting its essential role in parasite metabolism. EP analysis of the PfGK and HsGK genes was conducted separately as part of protozoan and metazoan clades, respectively, and key differences in the evolutionary patterns of the two molecules were identified. These differences were exploited to target the parasite selectively and six potential drug target sites were chosen, which contained residues under extreme purifying selection. To assess the functional and structural significance of these regions, as well as their accessibility to potential therapeutic molecules, they were mapped onto a 3D model of PfGK. This analysis ruled out three of the potential sites, since they were either not essential for enzyme activity or were embedded in the hydrophobic core of the enzyme. In collaboration with medicinal chemists the remaining three potential drug target sites will be used for in silico drug design and docking studies. The strategy of EP and refinement with structural modeling is generic in nature and will limit the development of drug resistance. This represents a significant advance for drug discovery programs in malaria and other infectious diseases.


2019 ◽  
Vol 231 ◽  
pp. 409-428 ◽  
Author(s):  
Rodrigo Castañeda ◽  
Sathishkumar Natarajan ◽  
Seo Yule Jeong ◽  
Bin Na Hong ◽  
Tong Ho Kang

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Francis E. Agamah ◽  
Delesa Damena ◽  
Michelle Skelton ◽  
Anita Ghansah ◽  
Gaston K. Mazandu ◽  
...  

Abstract Background The emergence and spread of malaria drug resistance have resulted in the need to understand disease mechanisms and importantly identify essential targets and potential drug candidates. Malaria infection involves the complex interaction between the host and pathogen, thus, functional interactions between human and Plasmodium falciparum is essential to obtain a holistic view of the genetic architecture of malaria. Several functional interaction studies have extended the understanding of malaria disease and integrating such datasets would provide further insights towards understanding drug resistance and/or genetic resistance/susceptibility, disease pathogenesis, and drug discovery. Methods This study curated and analysed data including pathogen and host selective genes, host and pathogen protein sequence data, protein–protein interaction datasets, and drug data from literature and databases to perform human-host and P. falciparum network-based analysis. An integrative computational framework is presented that was developed and found to be reasonably accurate based on various evaluations, applications, and experimental evidence of outputs produced, from data-driven analysis. Results This approach revealed 8 hub protein targets essential for parasite and human host-directed malaria drug therapy. In a semantic similarity approach, 26 potential repurposable drugs involved in regulating host immune response to inflammatory-driven disorders and/or inhibiting residual malaria infection that can be appropriated for malaria treatment. Further analysis of host–pathogen network shortest paths enabled the prediction of immune-related biological processes and pathways subverted by P. falciparum to increase its within-host survival. Conclusions Host–pathogen network analysis reveals potential drug targets and biological processes and pathways subverted by P. falciparum to enhance its within malaria host survival. The results presented have implications for drug discovery and will inform experimental studies.


Sign in / Sign up

Export Citation Format

Share Document