scholarly journals The hidden effect of inadvertent social information use on fluctuating predator–prey dynamics

Author(s):  
Zoltán Tóth

AbstractUnderstanding biotic interactions and abiotic forces that govern population regulation is crucial for predicting stability from both theoretical and applied perspectives. In recent years, social information has been proposed to profoundly affect the dynamics of populations and facilitate the coexistence of interacting species. However, we have limited knowledge about how social information use influences cyclic and non-cyclic fluctuations of populations and if any population-level effects can be expected in species where individuals do not form social groups. In this study, I built individual-based models in a factorial design to investigate how predator avoidance behaviour and associated inadvertent social information (ISI) use alters the predictions of classical predator–prey population models in non-grouping (e.g., randomly moving) animals. Simulation results showed that ISI use in prey stabilized population dynamics by disrupting high-amplitude cyclic fluctuations in both predator and prey populations. Moreover, it also decreased the strength of the negative feedback of second-order dependence between predator and prey. I propose that if social cues are commonly used sources of information in animals regardless of the level of social organization, then similar social information-mediated effects on trophic interactions and population dynamics may be prevalent in natural communities.

2011 ◽  
Vol 366 (1567) ◽  
pp. 949-957 ◽  
Author(s):  
Guillaume Rieucau ◽  
Luc-Alain Giraldeau

Research on social learning has focused traditionally on whether animals possess the cognitive ability to learn novel motor patterns from tutors. More recently, social learning has included the use of others as sources of inadvertent social information. This type of social learning seems more taxonomically widespread and its use can more readily be approached as an economic decision. Social sampling information, however, can be tricky to use and calls for a more lucid appraisal of its costs. In this four-part review, we address these costs. Firstly, we address the possibility that only a fraction of group members are actually providing social information at any one time. Secondly, we review experimental research which shows that animals are circumspect about social information use. Thirdly, we consider the cases where social information can lead to incorrect decisions and finally, we review studies investigating the effect of social information quality. We address the possibility that using social information or not is not a binary decision and present results of a study showing that nutmeg mannikins combine both sources of information, a condition that can lead to the establishment of informational cascades. We discuss the importance of empirically investigating the economics of social information use.


Oikos ◽  
2010 ◽  
Vol 119 (2) ◽  
pp. 286-291 ◽  
Author(s):  
Steven Hamblin ◽  
Kimberley J. Mathot ◽  
Julie Morand-Ferron ◽  
Joseph J. Nocera ◽  
Guillaume Rieucau ◽  
...  

2011 ◽  
Vol 278 (1719) ◽  
pp. 2806-2813 ◽  
Author(s):  
Mathilde Baude ◽  
Étienne Danchin ◽  
Marianne Mugabo ◽  
Isabelle Dajoz

Conspecifics are usually considered competitors negatively affecting food intake rates. However, their presence can also inform about resource quality by providing inadvertent social information. Few studies have investigated whether foragers perceive conspecifics as informers or competitors. Here, we experimentally tested whether variation in the density of demonstrators (‘none’, ‘low’ and ‘high’), whose location indicated flower profitability, affected decision-making of bumble-bees Bombus terrestris . Bumble-bees foraged on either ‘simple’ (two colours) or ‘complex’ (four colours) artificial floral communities. We found that conspecifics at low density may be used as sources of information in first flower choices, whereas they appeared as competitors over the whole foraging sequence. Low conspecific densities improved foragers' first-visit success rate in the simple environment, and decreased time to first landing, especially in the complex environment. High conspecific densities did not affect these behavioural parameters, but reduced flower constancy in both floral communities, which may alter the efficiency of pollinating visits. These results suggest that the balance of the costs and benefits of conspecific presence varies with foraging experience, floral community and density. Spatio-temporal scales could thus be an important determinant of social information use. This behavioural flexibility should allow bumble-bees to better exploit their environment.


2018 ◽  
Vol 146 ◽  
pp. 63-70 ◽  
Author(s):  
Mike M. Webster ◽  
Kevin N. Laland

2018 ◽  
Vol 115 (44) ◽  
pp. E10387-E10396 ◽  
Author(s):  
Richard P. Mann

The patterns and mechanisms of collective decision making in humans and animals have attracted both empirical and theoretical attention. Of particular interest has been the variety of social feedback rules and the extent to which these behavioral rules can be explained and predicted from theories of rational estimation and decision making. However, models that aim to model the full range of social information use have incorporated ad hoc departures from rational decision-making theory to explain the apparent stochasticity and variability of behavior. In this paper I develop a model of social information use and collective decision making by fully rational agents that reveals how a wide range of apparently stochastic social decision rules emerge from fundamental information asymmetries both between individuals and between the decision makers and the observer of those decisions. As well as showing that rational decision making is consistent with empirical observations of collective behavior, this model makes several testable predictions about how individuals make decisions in groups and offers a valuable perspective on how we view sources of variability in animal, and human, behavior.


2009 ◽  
Vol 30 (1) ◽  
pp. 32-40 ◽  
Author(s):  
Ulf Toelch ◽  
Marjolijn J. van Delft ◽  
Matthew J. Bruce ◽  
Rogier Donders ◽  
Marius T.H. Meeus ◽  
...  

2020 ◽  
pp. 1-24
Author(s):  
James M. Borg ◽  
Alastair Channon

In a recent article by Borg and Channon it was shown that social information alone, decoupled from any within-lifetime learning, can result in improved performance on a food-foraging task compared to when social information is unavailable. Here we assess whether access to social information leads to significant behavioral differences both when access to social information leads to improved performance on the task, and when it does not: Do any behaviors resulting from social-information use, such as movement and increased agent interaction, persist even when the ability to discriminate between poisonous and non-poisonous food is no better than when social-information is unavailable? Using a neuroevolutionary artificial life simulation, we show that social-information use can lead to the emergence of behaviors that differ from when social information is unavailable, and that these behaviors act as a promoter of agent interaction. The results presented here suggest that the introduction of social information is sufficient, even when decoupled from within-lifetime learning, for the emergence of pro-social behaviors. We believe this work to be the first use of an artificial evolutionary system to explore the behavioral consequences of social-information use in the absence of within-lifetime learning.


2013 ◽  
pp. 272-297 ◽  
Author(s):  
Ira G. Federspiel ◽  
Nicola S. Clayton ◽  
Nathan J. Emery

Sign in / Sign up

Export Citation Format

Share Document