scholarly journals Conspecifics as informers and competitors: an experimental study in foraging bumble-bees

2011 ◽  
Vol 278 (1719) ◽  
pp. 2806-2813 ◽  
Author(s):  
Mathilde Baude ◽  
Étienne Danchin ◽  
Marianne Mugabo ◽  
Isabelle Dajoz

Conspecifics are usually considered competitors negatively affecting food intake rates. However, their presence can also inform about resource quality by providing inadvertent social information. Few studies have investigated whether foragers perceive conspecifics as informers or competitors. Here, we experimentally tested whether variation in the density of demonstrators (‘none’, ‘low’ and ‘high’), whose location indicated flower profitability, affected decision-making of bumble-bees Bombus terrestris . Bumble-bees foraged on either ‘simple’ (two colours) or ‘complex’ (four colours) artificial floral communities. We found that conspecifics at low density may be used as sources of information in first flower choices, whereas they appeared as competitors over the whole foraging sequence. Low conspecific densities improved foragers' first-visit success rate in the simple environment, and decreased time to first landing, especially in the complex environment. High conspecific densities did not affect these behavioural parameters, but reduced flower constancy in both floral communities, which may alter the efficiency of pollinating visits. These results suggest that the balance of the costs and benefits of conspecific presence varies with foraging experience, floral community and density. Spatio-temporal scales could thus be an important determinant of social information use. This behavioural flexibility should allow bumble-bees to better exploit their environment.

Author(s):  
Zoltán Tóth

AbstractUnderstanding biotic interactions and abiotic forces that govern population regulation is crucial for predicting stability from both theoretical and applied perspectives. In recent years, social information has been proposed to profoundly affect the dynamics of populations and facilitate the coexistence of interacting species. However, we have limited knowledge about how social information use influences cyclic and non-cyclic fluctuations of populations and if any population-level effects can be expected in species where individuals do not form social groups. In this study, I built individual-based models in a factorial design to investigate how predator avoidance behaviour and associated inadvertent social information (ISI) use alters the predictions of classical predator–prey population models in non-grouping (e.g., randomly moving) animals. Simulation results showed that ISI use in prey stabilized population dynamics by disrupting high-amplitude cyclic fluctuations in both predator and prey populations. Moreover, it also decreased the strength of the negative feedback of second-order dependence between predator and prey. I propose that if social cues are commonly used sources of information in animals regardless of the level of social organization, then similar social information-mediated effects on trophic interactions and population dynamics may be prevalent in natural communities.


2011 ◽  
Vol 366 (1567) ◽  
pp. 949-957 ◽  
Author(s):  
Guillaume Rieucau ◽  
Luc-Alain Giraldeau

Research on social learning has focused traditionally on whether animals possess the cognitive ability to learn novel motor patterns from tutors. More recently, social learning has included the use of others as sources of inadvertent social information. This type of social learning seems more taxonomically widespread and its use can more readily be approached as an economic decision. Social sampling information, however, can be tricky to use and calls for a more lucid appraisal of its costs. In this four-part review, we address these costs. Firstly, we address the possibility that only a fraction of group members are actually providing social information at any one time. Secondly, we review experimental research which shows that animals are circumspect about social information use. Thirdly, we consider the cases where social information can lead to incorrect decisions and finally, we review studies investigating the effect of social information quality. We address the possibility that using social information or not is not a binary decision and present results of a study showing that nutmeg mannikins combine both sources of information, a condition that can lead to the establishment of informational cascades. We discuss the importance of empirically investigating the economics of social information use.


Oikos ◽  
2010 ◽  
Vol 119 (2) ◽  
pp. 286-291 ◽  
Author(s):  
Steven Hamblin ◽  
Kimberley J. Mathot ◽  
Julie Morand-Ferron ◽  
Joseph J. Nocera ◽  
Guillaume Rieucau ◽  
...  

2017 ◽  
Author(s):  
Charlotte Olivia Brand ◽  
Gillian R Brown ◽  
Catharine P Cross

Social learning provides an effective route to gaining up-to-date information, particularly when information is costly to obtain asocially. Theoretical work predicts that the willingness to switch between using asocial and social sources of information will vary between individuals according to their risk tolerance. We tested the prediction that, where there are sex differences in risk tolerance, altering the variance of the payoffs of using asocial and social information differentially influences the probability of social information use by sex. In a computer-based task that involved building a virtual spaceship, men and women (N=88) were given the option of using either asocial or social sources of information to improve their performance. When the asocial option was risky (i.e., the participant’s score could markedly increase or decrease) and the social option was safe (i.e., their score could slightly increase or remain the same), women, but not men, were more likely to use the social option than the asocial option. In all other conditions, both women and men preferentially used the asocial option to a similar degree. We therefore found both a sex difference in risk aversion and a sex difference in the preference for social information when relying on asocial information was risky, consistent with the hypothesis that levels of risk-aversion influence the use of social information.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4190 ◽  
Author(s):  
Charlotte O. Brand ◽  
Gillian R. Brown ◽  
Catharine P. Cross

Social learning provides an effective route to gaining up-to-date information, particularly when information is costly to obtain asocially. Theoretical work predicts that the willingness to switch between using asocial and social sources of information will vary between individuals according to their risk tolerance. We tested the prediction that, where there are sex differences in risk tolerance, altering the variance of the payoffs of using asocial and social information differentially influences the probability of social information use by sex. In a computer-based task that involved building a virtual spaceship, men and women (N = 88) were given the option of using either asocial or social sources of information to improve their performance. When the asocial option was risky (i.e., the participant’s score could markedly increase or decrease) and the social option was safe (i.e., their score could slightly increase or remain the same), women, but not men, were more likely to use the social option than the asocial option. In all other conditions, both women and men preferentially used the asocial option to a similar degree. We therefore found both a sex difference in risk aversion and a sex difference in the preference for social information when relying on asocial information was risky, consistent with the hypothesis that levels of risk-aversion influence the use of social information.


2017 ◽  
Author(s):  
Charlotte Olivia Brand ◽  
Gillian R Brown ◽  
Catharine P Cross

Social learning provides an effective route to gaining up-to-date information, particularly when information is costly to obtain asocially. Theoretical work predicts that the willingness to switch between using asocial and social sources of information will vary between individuals according to their risk tolerance. We tested the prediction that, where there are sex differences in risk tolerance, altering the variance of the payoffs of using asocial and social information differentially influences the probability of social information use by sex. In a computer-based task that involved building a virtual spaceship, men and women (N=88) were given the option of using either asocial or social sources of information to improve their performance. When the asocial option was risky (i.e., the participant’s score could markedly increase or decrease) and the social option was safe (i.e., their score could slightly increase or remain the same), women, but not men, were more likely to use the social option than the asocial option. In all other conditions, both women and men preferentially used the asocial option to a similar degree. We therefore found both a sex difference in risk aversion and a sex difference in the preference for social information when relying on asocial information was risky, consistent with the hypothesis that levels of risk-aversion influence the use of social information.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marcel Mertes ◽  
Julie Carcaud ◽  
Jean-Christophe Sandoz

AbstractSociality is classified as one of the major transitions in evolution, with the largest number of eusocial species found in the insect order Hymenoptera, including the Apini (honey bees) and the Bombini (bumble bees). Bumble bees and honey bees not only differ in their social organization and foraging strategies, but comparative analyses of their genomes demonstrated that bumble bees have a slightly less diverse family of olfactory receptors than honey bees, suggesting that their olfactory abilities have adapted to different social and/or ecological conditions. However, unfortunately, no precise comparison of olfactory coding has been performed so far between honey bees and bumble bees, and little is known about the rules underlying olfactory coding in the bumble bee brain. In this study, we used in vivo calcium imaging to study olfactory coding of a panel of floral odorants in the antennal lobe of the bumble bee Bombus terrestris. Our results show that odorants induce reproducible neuronal activity in the bumble bee antennal lobe. Each odorant evokes a different glomerular activity pattern revealing this molecule’s chemical structure, i.e. its carbon chain length and functional group. In addition, pairwise similarity among odor representations are conserved in bumble bees and honey bees. This study thus suggests that bumble bees, like honey bees, are equipped to respond to odorants according to their chemical features.


2018 ◽  
Vol 146 ◽  
pp. 63-70 ◽  
Author(s):  
Mike M. Webster ◽  
Kevin N. Laland

2018 ◽  
Vol 115 (44) ◽  
pp. E10387-E10396 ◽  
Author(s):  
Richard P. Mann

The patterns and mechanisms of collective decision making in humans and animals have attracted both empirical and theoretical attention. Of particular interest has been the variety of social feedback rules and the extent to which these behavioral rules can be explained and predicted from theories of rational estimation and decision making. However, models that aim to model the full range of social information use have incorporated ad hoc departures from rational decision-making theory to explain the apparent stochasticity and variability of behavior. In this paper I develop a model of social information use and collective decision making by fully rational agents that reveals how a wide range of apparently stochastic social decision rules emerge from fundamental information asymmetries both between individuals and between the decision makers and the observer of those decisions. As well as showing that rational decision making is consistent with empirical observations of collective behavior, this model makes several testable predictions about how individuals make decisions in groups and offers a valuable perspective on how we view sources of variability in animal, and human, behavior.


Sign in / Sign up

Export Citation Format

Share Document