Assessment of Fire Dynamics Simulator for Heat Flux and Flame Heights Predictions from Fires in SBI Tests

2008 ◽  
Vol 46 (2) ◽  
pp. 291-306 ◽  
Author(s):  
Jianping Zhang ◽  
Michael Delichatsios ◽  
Matthieu Colobert
Author(s):  
Jan-Michael Cabrera ◽  
Robert Moser ◽  
Ofodike A. Ezekoye

Abstract Fire scene reconstruction and determining the fire evolution (i.e. item-to-item ignition events) using the post-fire compartment is an extremely difficult task because of the time-integrated nature of the observed damages. Bayesian methods are ideal for making inferences amongst hypotheses given observations and are able to naturally incorporate uncertainties. A Bayesian methodology for determining probabilities to items that may have initiated the fire in a compartment from damage signatures is developed. Exercise of this methodology requires uncertainty quantification of these damage signatures. A simple compartment configuration was used to quantify the uncertainty in damage predictions by Fire Dynamics Simulator (FDS), and a compartment evolution program, JT-risk as compared to experimentally derived damage signatures. Surrogate sensors spaced within the compartment use heat flux data collected over the course of the simulations to inform damage models. Experimental repeatability showed up to 4% uncertainty in damage signatures between replicates . Uncertainties for FDS and JT-risk ranged from 12% up to 32% when compared to experimental damages. Separately, the evolution physics of a simple three fuel package problem with surrogate damage sensors were characterized in a compartment using experimental data, FDS, and JT-risk predictions. An simple ignition model was used for each of the fuel packages. The Bayesian methodology was exercised using the damage signatures collected, cycling through each of the three fuel packages, and combined with the previously quantified uncertainties. Only reconstruction using experimental data was able to confidently predict the true hypothesis from the three scenarios.


2006 ◽  
Vol 36 (11) ◽  
pp. 2894-2908 ◽  
Author(s):  
Ruiyu Sun ◽  
Mary Ann Jenkins ◽  
Steven K Krueger ◽  
William Mell ◽  
Joseph J Charney

Before using a fluid dynamics physically based wildfire model to study wildfire, validation is necessary and model results need to be systematically and objectively analyzed and compared to real fires, which requires suitable data sets. Observational data from the Meteotron experiment are used to evaluate the fire-plume properties simulated by two fluid dynamics numerical wildfire models, the Fire Dynamics Simulator (FDS) and the Clark coupled atmosphere–fire model. Comparisons based on classical plume theory between numerical model and experimental Meteotron results show that plume theory, because of its simplifying assumptions, is a fair but restricted rendition of important plume-averaged properties. The study indicates that the FDS, an explicit and computationally demanding model, produces good agreement with the Meteotron results even at a relatively coarse horizontal grid size of 4 m for the FDS, while the coupled atmosphere–fire model, a less explicit and less computationally demanding model, can produce good agreement, but that the agreement is sensitive to surface vertical-grid sizes and the method by which the energy released from the fire is put into the atmosphere.


2014 ◽  
Vol 955-959 ◽  
pp. 1840-1849
Author(s):  
Cherng Shing Lin ◽  
Kuo Da Chou

Taiwan is an island nation with numerous mountains and few plains. Consequently, the number of tunnel projects has gradually increased and tunnels are becoming longer. Because the number of large tunnels that exceed 1000 meters in length has increased, the effective escape and evacuation of people during a fire and the minimization of injury are crucial to fire protection engineers. For this study, an actual example of a fire that occurred in Hsuehshan Tunnel (12.9 kilometers and the longest tunnel in Southeast Asia) was used. A fire dynamics simulator (FDS) including numerical simulation software was applied to analyze this fire and the relevant information that was collected was compared and verified. The fire site simulation showed the escape and evacuation of people during the fire. Simulations of the original fire site and the possible escape time for people with various attributes were discussed to provide quantitative data and recommendations based on the analysis results, which can serve as a reference for fire protection engineering.


Author(s):  
Emanuel Ferreira ◽  
João Paulo C. Rodrigues ◽  
Leça Coelho

Neste artigo é analisado o risco de incêndio numa instalação de tratamento de resíduos sólidos urbanos, nomeadamente ao nível da sua fossa de deposição desses resíduos. Foram realizadas simulações do desenvolvimento do incêndio usando um modelo de duas zonas, o Consolidated Model of Fire and Smoke Transport (CFAST) e um modelo de campo, o Fire Dynamics Simulator and Smokeview (FDS-SMV), ambos do National Institute of Standards and Technology (NIST), sendo os resultados analisados e discutidos.


2019 ◽  
Vol 56 (3) ◽  
pp. 1315-1352 ◽  
Author(s):  
Roberto Bellas ◽  
Miguel A. Gómez ◽  
Arturo González-Gil ◽  
Jacobo Porteiro ◽  
José L. Míguez

2018 ◽  
Vol 54 ◽  
pp. 69-84 ◽  
Author(s):  
Ilyas Sellami ◽  
Brady Manescau ◽  
Khaled Chetehouna ◽  
Charles de Izarra ◽  
Rachid Nait-Said ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3099 ◽  
Author(s):  
Ho Trong Khoat ◽  
Ji Tea Kim ◽  
Tran Dang Quoc ◽  
Ji Hyun Kwark ◽  
Hong Sun Ryou

Understanding fire characteristics under sprinkler spray is valuable for performance-based safety design. However, fire characteristics during fire suppression by sprinkler spray has seldom been studied in detail. In order to present a fire suppression model by sprinkler spray and determine the fire characteristics after sprinkler activation in a compartment, a numerical analysis was conducted using a fire dynamics simulator (FDS). A simple fire suppression model by sprinkler spray was calibrated by comparing ceiling temperatures from experimental data. An extinguishing coefficient of 3.0 was shown to be suitable for the fire suppression model. The effect of sprinkler spray on the smoke layer during fire suppression was explained, revealing a smoke logging phenomenon. In addition, the smoke, which spread under the influence of the sprinkler spray, was also investigated. The temperature, velocity, and mass flow rate of the smoke layer through the doorway was significantly reduced during fire suppression compared to a free burn case.


2020 ◽  
Vol 38 (4) ◽  
pp. 377-394
Author(s):  
Michael Spearpoint ◽  
Charlie Hopkin ◽  
Danny Hopkin

Kitchen hob fires present a potential threat to occupants escaping from dwellings and calculations may be needed to assess the hazard. Determination of the thermal heat flux from flames to a target can be achieved through the use of hand calculation methods or computational tools. This article compares point source, parallel plane and cylindrical view factor hand calculations and computational simulations using B-RISK and Fire Dynamics Simulator of thermal heat flux with kitchen hob fire experiments presented in the literature. Knowing the level of accuracy of each method provides useful information to designers. Although the point source model is influenced by whether the radial distance is measured perpendicular to the heat flux target or is offset relative to the centre of the flame, the article concludes that it provides an adequate approach for the calculation of thermal heat flux in the case of kitchen hob fires.


Sign in / Sign up

Export Citation Format

Share Document