scholarly journals A Numerical Analysis of the Fire Characteristics after Sprinkler Activation in the Compartment Fire

Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3099 ◽  
Author(s):  
Ho Trong Khoat ◽  
Ji Tea Kim ◽  
Tran Dang Quoc ◽  
Ji Hyun Kwark ◽  
Hong Sun Ryou

Understanding fire characteristics under sprinkler spray is valuable for performance-based safety design. However, fire characteristics during fire suppression by sprinkler spray has seldom been studied in detail. In order to present a fire suppression model by sprinkler spray and determine the fire characteristics after sprinkler activation in a compartment, a numerical analysis was conducted using a fire dynamics simulator (FDS). A simple fire suppression model by sprinkler spray was calibrated by comparing ceiling temperatures from experimental data. An extinguishing coefficient of 3.0 was shown to be suitable for the fire suppression model. The effect of sprinkler spray on the smoke layer during fire suppression was explained, revealing a smoke logging phenomenon. In addition, the smoke, which spread under the influence of the sprinkler spray, was also investigated. The temperature, velocity, and mass flow rate of the smoke layer through the doorway was significantly reduced during fire suppression compared to a free burn case.

Author(s):  
Paolo E. Santangelo ◽  
Paolo Tartarini ◽  
Beatrice Pulvirenti ◽  
Paolo Valdiserri ◽  
Andre´ W. Marshall

Water-mist systems have become a promising technology in the fire-fighting field over the last twenty years. The present work is aimed at employing the available knowledge on water-mist sprays in an experimental and numerical analysis of the suppression mechanism. Therefore, a water-mist system has been operated within a typical fire case. Most notably, this latter is constituted by a heptane pool fire: experiments have been carried out inside a test chamber, where a set of thermocouples has conveniently been placed to evaluate the thermal transient at different locations of interest. Some free-combustion tests have been run as a benchmark to validate combustion models. Then, a typical water-mist nozzle has been inserted and activated to realize control, suppression and potential extinction of the generated fire. The recognized FDS (Fire Dynamics Simulator) and Fluent® codes have been challenged in reproducing the test case: thermal transient and suppression time have been considered as parameters for validation. Therefore, the water-mist spray has been modeled and the already mentioned results about its characterization have been implemented as initial or boundary conditions. Moreover, the fire scenario has been modeled as well. A good agreement between experimental and numerical results has been obtained, even under some approximations, with specific reference to combustion mechanisms.


2019 ◽  
Vol 56 (3) ◽  
pp. 1315-1352 ◽  
Author(s):  
Roberto Bellas ◽  
Miguel A. Gómez ◽  
Arturo González-Gil ◽  
Jacobo Porteiro ◽  
José L. Míguez

Author(s):  
Hamed H. Saber ◽  
Ahmed Kashef ◽  
Alex Bwalya

A number of fire ventilation scenarios were investigated in order to identify the proper ventilation scheme for conducting design fire tests in a medium-sized residential room of a size of 4.2 m long, 3.8 m wide and 2.4 m high. The ventilation schemes were based on using a window, door, or both with different sizes. The fuel package that was used in all scenarios consisted of a mock-up sofa made of polyurethane foam and two wood cribs underneath it. The selection of this fuel package is supported by fire statistics that many fatal residential fires begin with an item of upholstered furniture. The CFD technique was used to conduct the numerical simulations for eleven ventilation scenarios using the Fire Dynamics Simulator (FDS) version 5. The effect of window and door sizes, and fire load location on the heat release rate, burning rate, temperature during the period of fully-developed fire (post-flashover), and the onset of post-flashover and its duration were investigated.


2015 ◽  
Vol 763 ◽  
pp. 134-139 ◽  
Author(s):  
Cherng Shing Lin ◽  
Min Gen Wu ◽  
Sheng Min Tsai

A large number of factories have been sequentially established in Taiwan following the economic take-off several decades ago. However, this growth in number has led to the prevalence of fire hazards. Factory fires typically cause substantial casualties and property losses, and have therefore become a focal point for research. In the present study, the researchers employed the Fire Dynamics Simulator (FDS) software developed by the National Institute of Standards and Technology (NIST) to simulate and evaluate a factory fire scene in Taiwan. The fire continued for approximately 74 h, rendering this outbreak the single longest building fire and rescue in Taiwan. By analyzing relevant data, the researchers established a numerical model of the fire scene to simulate, evaluate, and analyze the influences that temperature, smoke conditions, and smoke layer height parameters had on the fire scene. The findings enabled the researchers to better understand the damage conditions that occur during fire outbreaks. The results of this case study can serve as a reference for designing and improving future fire prevention and safety plans.


2012 ◽  
Vol 446-449 ◽  
pp. 2908-2913 ◽  
Author(s):  
Xiao Feng ◽  
Yan Feng Li

An alternate means for protecting high-rise stairwell enclosures using the positive pressure ventilation is evaluated. An analysis performed by using the Fire Dynamics Simulator (FDS) model shows that the positive pressure ventilation can be an effective method for protecting the stairwell enclosure. Three types of ventilation methods are compared in the same fire condition and the best one is determined based on the decrease of temperature in the stairwell. The optimal rate for ventilating the stair requires optimization of the airflow rate according to postulated fire scenarios for the building and the desired performance with respect to tenability conditions within the stair.


Author(s):  
Jan-Michael Cabrera ◽  
Robert Moser ◽  
Ofodike A. Ezekoye

Abstract Fire scene reconstruction and determining the fire evolution (i.e. item-to-item ignition events) using the post-fire compartment is an extremely difficult task because of the time-integrated nature of the observed damages. Bayesian methods are ideal for making inferences amongst hypotheses given observations and are able to naturally incorporate uncertainties. A Bayesian methodology for determining probabilities to items that may have initiated the fire in a compartment from damage signatures is developed. Exercise of this methodology requires uncertainty quantification of these damage signatures. A simple compartment configuration was used to quantify the uncertainty in damage predictions by Fire Dynamics Simulator (FDS), and a compartment evolution program, JT-risk as compared to experimentally derived damage signatures. Surrogate sensors spaced within the compartment use heat flux data collected over the course of the simulations to inform damage models. Experimental repeatability showed up to 4% uncertainty in damage signatures between replicates . Uncertainties for FDS and JT-risk ranged from 12% up to 32% when compared to experimental damages. Separately, the evolution physics of a simple three fuel package problem with surrogate damage sensors were characterized in a compartment using experimental data, FDS, and JT-risk predictions. An simple ignition model was used for each of the fuel packages. The Bayesian methodology was exercised using the damage signatures collected, cycling through each of the three fuel packages, and combined with the previously quantified uncertainties. Only reconstruction using experimental data was able to confidently predict the true hypothesis from the three scenarios.


2012 ◽  
Vol 531-532 ◽  
pp. 716-719
Author(s):  
Te Chi Chen ◽  
Chia Chun Yu ◽  
Cherng Shing Lin

Along with the economic growth, more crowded entertainment places are growing dramatically and the safety concerns are no longer contained as usual. The huge property damage and heavy casualties of fire caused by the owner ignorance of safety management or the fall short of the fire resistance specifications. These factors caused serious casualties after fire occurred. This research utilizes Fire Dynamics Simulator (FDS) software to analyze and simulate the fire accident that occurred in a public entertainment places on Po-Li bar, KeeLung City, Taiwan. The computer simulation calculates the fire spread and smoke distribution at the fire scene, and is in reasonable agreement with the post report provided by the fire department and photos. Simulation results of the various important parameters - such as temperature, CO concentration and smoke layer height during the fire time domain are obtained. This study will provide the improvement of fire parameters and suggestions to avoid future unfortunate events.


Sign in / Sign up

Export Citation Format

Share Document