scholarly journals Numerical Study of Self-Heating Ignition of a Box of Lithium-Ion Batteries During Storage

2020 ◽  
Vol 56 (6) ◽  
pp. 2603-2621 ◽  
Author(s):  
Zhenwen Hu ◽  
Xuanze He ◽  
Francesco Restuccia ◽  
Guillermo Rein

Abstract Many thermal events have been reported during storage and transport of large numbers of Lithium-ion batteries (LIBs), raising industry concerns and research interests in its mechanisms. Apart from electrochemical failure, self-heating ignition, driven by poor heat transfer could also be a possible cause of fire in large-scale ensembles of LIBs. The classical theories and models of self-heating ignition assume a homogeneous lumped system, whereas LIBs storage involves complex geometry and heterogeneous material composition due to the packaging and insulation, which significantly changes the heat transfer within the system. These effects on the self-heating behaviour of LIBs have not been studied yet. In this study, the self-heating ignition behaviour of a box containing 100 LiCoO2 (LCO) type of cylindrical cells with different insulation is numerically modelled using COMSOL Multiphysics with a multi-step reaction scheme. The model predicts that the critical ambient temperature triggering self-ignition of the box is 125°C, which is 30°C lower than that for a single cell, and the time to thermal runaway is predicted to be 15 times longer. The effects of different insulating materials and packing configurations are also analysed. This work provides novel insights into the self-heating of large-scale LIBs.

Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 703 ◽  
Author(s):  
Md Said ◽  
Mohd Tohir

The high capacity and voltage properties demonstrated by lithium-ion batteries render them as the preferred energy carrier in portable electronic devices. The application of the lithium-ion batteries which previously circulating and contained around small-scale electronics is now expanding into large scale emerging markets such as electromobility and stationary energy storage. Therefore, the understanding of the risk involved is imperative. Thermal runaway is the most common failure mode of lithium-ion battery which may lead to safety incidents. Transport process of immense amounts of heat released during thermal runaway of lithium-ion battery to neighboring batteries in a module can lead to cascade failure of the whole energy storage system. In this work, a model is developed to predict the propagation of lithium-ion battery in a module for large scale applications. For this purpose, kinetic of material thermal decomposition is combined with heat transfer modelling. The simulation is built based on chemical kinetics at component level of a singular cell and energy balance that accounts for conductive and convective heat transfer.


2021 ◽  
Vol 190 ◽  
pp. 116780
Author(s):  
Zhenwen Hu ◽  
Xuanze He ◽  
Francesco Restuccia ◽  
Han Yuan ◽  
Guillermo Rein

Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 71
Author(s):  
Seyed Saeed Madani ◽  
Erik Schaltz ◽  
Søren Knudsen Kær

Lithium-ion batteries are being implemented in different large-scale applications, including aerospace and electric vehicles. For these utilizations, it is essential to improve battery cells with a great life cycle because a battery substitute is costly. For their implementation in real applications, lithium-ion battery cells undergo extension during the course of discharging and charging. To avoid disconnection among battery pack ingredients and deformity during cycling, compacting force is exerted to battery packs in electric vehicles. This research used a mechanical design feature that can address these issues. This investigation exhibits a comprehensive description of the experimental setup that can be used for battery testing under pressure to consider lithium-ion batteries’ safety, which could be employed in electrified transportation. Besides, this investigation strives to demonstrate how exterior force affects a lithium-ion battery cell’s performance and behavior corresponding to static exterior force by monitoring the applied pressure at the dissimilar state of charge. Electrochemical impedance spectroscopy was used as the primary technique for this research. It was concluded that the profiles of the achieved spectrums from the experiments seem entirely dissimilar in comparison with the cases without external pressure. By employing electrochemical impedance spectroscopy, it was noticed that the pure ohmic resistance, which is related to ion transport resistance of the separator, could substantially result in the corresponding resistance increase.


Carbon ◽  
2013 ◽  
Vol 64 ◽  
pp. 158-169 ◽  
Author(s):  
Shuangqiang Chen ◽  
Peite Bao ◽  
Linda Xiao ◽  
Guoxiu Wang

2017 ◽  
Vol 118 ◽  
pp. 188-198 ◽  
Author(s):  
Yongsheng Tian ◽  
Keyuan Zhang ◽  
Naihua Wang ◽  
Zheng Cui ◽  
Lin Cheng

Sign in / Sign up

Export Citation Format

Share Document