Naltrexone attenuates stress-induced suppression of LH secretion in the pituitary gland in the Cichlid fish Oreochromis mossambicus: evidence for the opioidergic mediation of reproductive stress response

2012 ◽  
Vol 39 (3) ◽  
pp. 627-636 ◽  
Author(s):  
C. B. Ganesh ◽  
Ambarisha Chabbi
2003 ◽  
Vol 285 (5) ◽  
pp. R1098-R1106 ◽  
Author(s):  
Rogier D. van Anholt ◽  
Tom Spanings ◽  
William Koven ◽  
Sjoerd E. Wendelaar Bonga

The cyclooxygenase (COX) pathway converts arachidonic acid (ArA) into prostaglandins (PGs), which interact with the stress response in mammals and possibly in fish as well. Acetylsalicylic acid (ASA) is a COX inhibitor and was used to characterize the effects of PGs on the release of several hormones and the stress response of tilapia ( Oreochromis mossambicus). Plasma PGE2 was significantly reduced at 100 mg ASA/kg body wt, and both basal PGE2 and cortisol levels correlated negatively with plasma salicylate. Basal plasma 3,5,3′-triiodothyronine (T3) was reduced by ASA treatment, whereas prolactin (PRL)188 increased at 100 mg ASA/kg body wt. ASA depressed the cortisol response to the mild stress of 5 min of net confinement. As expected, glucose and lactate were elevated in the stressed control fish, but the responses were blunted by ASA treatment. Gill Na+-K+-ATPase activity was not affected by ASA. Plasma osmolarity increased after confinement in all treatments, whereas sodium only increased at the high ASA dose. This is the first time ASA has been administered to fish in vivo, and the altered hormone release and the inhibition of the acute stress response indicated the involvement of PGs in these processes.


2011 ◽  
Vol 23 (6) ◽  
pp. 780 ◽  
Author(s):  
Magdalena Ciechanowska ◽  
Magdalena Łapot ◽  
Tadeusz Malewski ◽  
Krystyna Mateusiak ◽  
Tomasz Misztal ◽  
...  

There is no information in the literature regarding the effect of corticotropin-releasing hormone (CRH) on genes encoding gonadotrophin-releasing hormone (GnRH) and the GnRH receptor (GnRHR) in the hypothalamus or on GnRHR gene expression in the pituitary gland in vivo. Thus, the aim of the present study was to investigate, in follicular phase ewes, the effects of prolonged, intermittent infusion of small doses of CRH or its antagonist (α-helical CRH 9-41; CRH-A) into the third cerebral ventricle on GnRH mRNA and GnRHR mRNA levels in the hypothalamo–pituitary unit and on LH secretion. Stimulation or inhibition of CRH receptors significantly decreased or increased GnRH gene expression in the hypothalamus, respectively, and led to different responses in GnRHR gene expression in discrete hypothalamic areas. For example, CRH increased GnRHR gene expression in the preoptic area, but decreased it in the hypothalamus/stalk median eminence and in the anterior pituitary gland. In addition, CRH decreased LH secretion. Blockade of CRH receptors had the opposite effect on GnRHR gene expression. The results suggest that activation of CRH receptors in the hypothalamus of follicular phase ewes can modulate the biosynthesis and release of GnRH through complex changes in the expression of GnRH and GnRHR genes in the hypothalamo–anterior pituitary unit.


1985 ◽  
Vol 82 (22) ◽  
pp. 7490-7494 ◽  
Author(s):  
J. L. Specker ◽  
D. S. King ◽  
R. S. Nishioka ◽  
K. Shirahata ◽  
K. Yamaguchi ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (9) ◽  
pp. e44086 ◽  
Author(s):  
José M. Simões ◽  
Magda C. Teles ◽  
Rui F. Oliveira ◽  
Annemie Van der Linden ◽  
Marleen Verhoye

Sign in / Sign up

Export Citation Format

Share Document