Self-Similar Unsteady Viscous Flow

2005 ◽  
Vol 40 (4) ◽  
pp. 526-531 ◽  
Author(s):  
A. M. Gaifullin
AIAA Journal ◽  
10.2514/2.477 ◽  
1998 ◽  
Vol 36 (6) ◽  
pp. 1039-1048 ◽  
Author(s):  
Razvan Florea ◽  
Kenneth C. Hall ◽  
Paul G. A. Cizmas

2016 ◽  
Vol 13 (04) ◽  
pp. 1641012
Author(s):  
Qingjie Meng ◽  
Decheng Wan

The unsteady viscous flow around a 12000TEU ship model entering the Third Set of Panama Locks with different eccentricity is simulated by solving the unsteady Reynolds averaged Navier–Stokes (RANS) equations in combination with the [Formula: see text]SST turbulence model. Overset grid technology is utilized to maintain grid orthogonality and the effects of the free surface are taken into account. The hydrodynamic forces, vertical displacement as well as surface pressure distribution are predicted and analyzed. First, a benchmark test case is designed to validate the capability of the present methods in the prediction of the viscous flow around the ship when maneuvering into the lock. The accumulation of water in front of the ship during entry into a lock is noticed. A set of systematic computations with different eccentricity are then carried out to examine the effect of eccentricity on the ship–lock hydrodynamic interaction.


1958 ◽  
Vol 4 (1) ◽  
pp. 81-86 ◽  
Author(s):  
R. B. Payne

A numerical solution has been obtained for the starting flow of a viscous fluid past a circular cylinder at Reynolds numbers 40 and 100. The method used is the step-by-step forward integration in time of Helmholtz's vorticity equation. The advantage of working with the vorticity is that calculations can be confined to the region of non-zero vorticity near the cylinder.The general features of the flow, including the formation of the eddies attached to the rear of the cylinder, have been determined, and the drag has been calculated. At R = 40 the drag on the cylinder decreases with time to a value very near that for the steady flow.


Sign in / Sign up

Export Citation Format

Share Document