scholarly journals Type-Decomposition of an Effect Algebra

2009 ◽  
Vol 40 (9-10) ◽  
pp. 1543-1565 ◽  
Author(s):  
David J. Foulis ◽  
Sylvia Pulmannová
2010 ◽  
Vol 89 (3) ◽  
pp. 335-358 ◽  
Author(s):  
DAVID J. FOULIS ◽  
SYLVIA PULMANNOVÁ ◽  
ELENA VINCEKOVÁ

AbstractEffect algebras, which generalize the lattice of projections in a von Neumann algebra, serve as a basis for the study of unsharp observables in quantum mechanics. The direct decomposition of a von Neumann algebra into types I, II, and III is reflected by a corresponding decomposition of its lattice of projections, and vice versa. More generally, in a centrally orthocomplete effect algebra, the so-called type-determining sets induce direct decompositions into various types. In this paper, we extend the theory of type decomposition to a (possibly) noncommutative version of an effect algebra called a pseudoeffect algebra. It has been argued that pseudoeffect algebras constitute a natural structure for the study of noncommuting unsharp or fuzzy observables. We develop the basic theory of centrally orthocomplete pseudoeffect algebras, generalize the notion of a type-determining set to pseudoeffect algebras, and show how type-determining sets induce direct decompositions of centrally orthocomplete pseudoeffect algebras.


2020 ◽  
Vol 70 (3) ◽  
pp. 753-758
Author(s):  
Marcel Polakovič

AbstractLet 𝓖D(𝓗) denote the generalized effect algebra consisting of all positive linear operators defined on a dense linear subspace D of a Hilbert space 𝓗. The D-weak operator topology (introduced by other authors) on 𝓖D(𝓗) is investigated. The corresponding closure of the set of bounded elements of 𝓖D(𝓗) is the whole 𝓖D(𝓗). The closure of the set of all unbounded elements of 𝓖D(𝓗) is also the set 𝓖D(𝓗). If Q is arbitrary unbounded element of 𝓖D(𝓗), it determines an interval in 𝓖D(𝓗), consisting of all operators between 0 and Q (with the usual ordering of operators). If we take the set of all bounded elements of this interval, the closure of this set (in the D-weak operator topology) is just the original interval. Similarly, the corresponding closure of the set of all unbounded elements of the interval will again be the considered interval.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hanyu Zhang ◽  
Ruoyi Cai ◽  
James Dai ◽  
Wei Sun

AbstractWe introduce a new computational method named EMeth to estimate cell type proportions using DNA methylation data. EMeth is a reference-based method that requires cell type-specific DNA methylation data from relevant cell types. EMeth improves on the existing reference-based methods by detecting the CpGs whose DNA methylation are inconsistent with the deconvolution model and reducing their contributions to cell type decomposition. Another novel feature of EMeth is that it allows a cell type with known proportions but unknown reference and estimates its methylation. This is motivated by the case of studying methylation in tumor cells while bulk tumor samples include tumor cells as well as other cell types such as infiltrating immune cells, and tumor cell proportion can be estimated by copy number data. We demonstrate that EMeth delivers more accurate estimates of cell type proportions than several other methods using simulated data and in silico mixtures. Applications in cancer studies show that the proportions of T regulatory cells estimated by DNA methylation have expected associations with mutation load and survival time, while the estimates from gene expression miss such associations.


Author(s):  
Simin Saidi Goraghani ◽  
Rajab Ali Borzooei

 In this paper, by considering the notions of effect algebra and product effect algebra, we define the concept of effect module. Then we investigate some properties of effect modules, and we present some examples on them. Finally, we introduce some interesting topologies on effect modules.


2010 ◽  
Vol 60 (1) ◽  
Author(s):  
Ivan Chajda

AbstractHaving an MV-algebra, we can restrict its binary operation addition only to the pairs of orthogonal elements. The resulting structure is known as an effect algebra, precisely distributive lattice effect algebra. Basic algebras were introduced as a generalization of MV-algebras. Hence, there is a natural question what an effect-like algebra can be reached by the above mentioned construction if an MV-algebra is replaced by a basic algebra. This is answered in the paper and properties of these effect-like algebras are studied.


Sign in / Sign up

Export Citation Format

Share Document