scholarly journals Correction to: Multi-directional composite laminates: fatigue delamination propagation in mode I—a comparison

Author(s):  
Leslie Banks-Sills ◽  
Ido Simon ◽  
Tomer Chocron
2000 ◽  
Author(s):  
Leishan Chen ◽  
Peter Ifju ◽  
Bhavani Sankar

2016 ◽  
Vol 94 ◽  
pp. 338-349 ◽  
Author(s):  
Andrew Bergan ◽  
Carlos Dávila ◽  
Frank Leone ◽  
Jonathan Awerbuch ◽  
Tein-Min Tan

2018 ◽  
Vol 189 ◽  
pp. 221-231 ◽  
Author(s):  
Liaojun Yao ◽  
Yi Sun ◽  
Licheng Guo ◽  
Xiuqi Lyu ◽  
Meiying Zhao ◽  
...  

2020 ◽  
pp. 002199832095078
Author(s):  
Julio A Rodríguez-González ◽  
Carlos Rubio-González

In this work, the effect of seawater ageing on mode I and mode II interlaminar fracture toughness ([Formula: see text] and [Formula: see text]) of prepreg-based woven glass fiber/epoxy laminates with and without multiwall carbon nanotubes (MWCNTs) has been investigated. The first part of the investigation reports the moisture absorption behavior of multiscale composite laminates exposed to seawater ageing for ∼3912 h at 70 °C. Then, the results of mode I and mode II fracture tests are presented and a comparison of [Formula: see text] and [Formula: see text] for each type of material group and condition is made. Experimental results showed the significant effect of seawater ageing on [Formula: see text] of multiscale composite laminates due to matrix plasticization and fiber bridging. The improvement in [Formula: see text] of the wet glass fiber/epoxy laminate was about 50% higher than that of the neat laminate (without MWCNTs) under dry condition. It was also found that the presence of MWCNTs into composite laminates promotes a moderate increase (8%) in their [Formula: see text] as a result of the additional toughening mechanisms induced by CNTs during the delamination process. Scanning electron microscopy analysis conducted on fracture surface of specimens reveals the transition from brittle (smooth surface) to ductile (rough surface) in the morphology of composite laminates due to the influence of seawater ageing on the polymeric matrix and fiber/matrix interface.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 513 ◽  
Author(s):  
Claudia Barile ◽  
Caterina Casavola ◽  
Benedetto Gambino ◽  
Alessandro Mellone ◽  
Marco Spagnolo

In the last decades, the increasing use of laminate materials, such as carbon fibre reinforced plastics, in several engineering applications has pushed researchers to deeply investigate their mechanical behavior, especially in consideration of the delamination process, which could affect their performance. The need for improving the capability of the current instruments in predicting some collapse or strength reduction due to hidden damages leads to the necessity to combine numerical models with experimental campaigns. The validation of the numerical models could give useful information about the mechanical response of the materials, providing predictive data about their lifetime. The purpose of the delamination tests is to collect reliable results by monitoring the delamination growth of the simulated in situ cracking and use them to validate the numerical models. In this work, an experimental campaign was carried out on high performance composite laminates with respect to the delamination mode I; subsequently, a numerical model representative of the experimental setup was built. The ANSYS Workbench Suite was used to simulate the delamination phenomena and modeFRONTIER was applied for the numerical/experimental calibration of the constitutive relationship on the basis of the delamination process, whose mechanism was implemented by means of the cohesive zone material (CZM) model.


Sign in / Sign up

Export Citation Format

Share Document