Analysis of the peel test for elastic-plastic film with combined kinematic and isotropic hardening

Author(s):  
G. Girard ◽  
M. Martiny ◽  
S. Mercier
2006 ◽  
Vol 73 (16) ◽  
pp. 2324-2335 ◽  
Author(s):  
H. Hadavinia ◽  
L. Kawashita ◽  
A.J. Kinloch ◽  
D.R. Moore ◽  
J.G. Williams

Author(s):  
Zijian Zhao ◽  
Abdel-Hakim Bouzid

Abstract SS316L finned tubes are becoming very popular in high-pressure gas exchangers and particularly in CO2 cooler applications. Due to the high-pressure requirement during operation, these tubes require an accurate residual stress evaluation during the expansion process. Indeed, die expansion of SS tubes creates not only high stresses when combined with operation stresses but also micro-cracks during expansion when the expansion process is not very well controlled. This research work aims at studying the elastic-plastic behavior and estimating the residual stress states by modeling the die expansion process. The stresses and deformations of the joint are analyzed numerically using the finite element method. The expansion and contraction process is modeled considering elastic-plastic material behavior for different die sizes. The maximum longitudinal, tangential and contact stresses are evaluated to verify the critical stress state of the joint during the expansion process. The importance of the material behavior in evaluating the residual stresses using kinematic and isotropic hardening is addressed.


2003 ◽  
Vol 70 (6) ◽  
pp. 799-808 ◽  
Author(s):  
T. J. McDevitt ◽  
J. G. Simmonds

Load-deflection curves are computed for an elastic-plastic ring that is slowly crushed between frictionless, rigid plates (platens). The ring is assumed to be inextensional with plane sections remaining plane and to obey a bi-linear stress-strain law with isotropic hardening. These assumptions lead to a local nonlinear moment-curvature relation identical to that developed by Liu et al. When inserted into the exact equation for moment equilibrium, this constitutive relation yields a second-order, nonlinear ordinary differential equation for the angle α between the deformed centerline of the ring and the horizontal. The numerical solution of this equation, which uses a combined penalty-continuation method, along with an auxiliary equation relating the vertical deflection to α, leads to overall load-deflection curves that depend on two dimensionless parameters, λ and μ. The first is the ratio of the plastic modulus to the elastic modulus; the second measures the ratio of plastic to elastic effects. As μ→0, the overall load-deflection curve of Frish-Fay for the elastica is recovered; as μ→∞, that of DeRuntz and Hodge for a rigid-perfectly plastic ring is recovered. Three scenarios are considered: I0, in which an initially straight, stress-free beam is bent elastically into a ring and then crushed; II0, in which an initially stress-free ring is crushed; and III0, in which an initially straight beam is bent first elastically and then elastically-plastically into a ring and then crushed. Results for scenario II0 are shown to agree well with experiments of Reddy and Reid if λ=0.01 and μ=10 and 20 and with experiments of Avalle and Goglio if λ=0.02 and μ=11. In scenarios I0 and II0, the effects of unloading prove to be small, reinforcing a similar conclusion of Liu et al., who considered the large-deflection of an elastic-plastic cantilever under a tip load. If no unloading is assumed, a more analytical treatment is possible, as shown in the second part of the present paper. The model predicts that the ring always remains in full contact with the platens, in agreement with recent experiments by Avalle and Goglio on annealed aluminum tubes. Pull-away from the platens also observed in experiments is ascribed to end effects which cannot be modeled by a one-dimensional beam theory. However, it is argued that, even if there is pull-away, the effect on the overall force-deflection relation must be small because in both cases the forces exerted by the platens are concentrated at the ends of the contact region. Moving pictures of successive stages of deformation of the ring showing the formation of plastic loading and unloading zones in all three scenarios may be found on the web site www.people.virginia.edu/∼jgs/ring.html.


2012 ◽  
Vol 249-250 ◽  
pp. 927-930
Author(s):  
Ze Yu Wu ◽  
Xin Li Bai ◽  
Bing Ma

In finite element calculation of plastic mechanics, isotropic hardening model, kinematic hardening model and mixed hardening model have their advantages and disadvantages as well as applicability area. In this paper, by use of the tensor analysis method and mixed hardening theory in plastic mechanics, the constitutive relation of 3-D mixed hardening problem is derived in detail based on the plane mixed hardening. Numerical results show that, the proposed 3-D mixed hardening constitutive relation agrees well with the test results in existing references, and can be used in the 3-D elastic-plastic finite element analysis.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Biplab Chatterjee ◽  
Prasanta Sahoo

The present study considers the effect of strain hardening on elastic-plastic contact of a deformable sphere with a rigid flat under full stick contact condition using commercial finite element software ANSYS. Different values of tangent modulus are considered to study the effect of strain hardening. It is found that under a full stick contact condition, strain hardening greatly influences the contact parameters. Comparison has also been made between perfect slip and full stick contact conditions. It is observed that the contact conditions have negligible effect on contact parameters. Studies on isotropic and kinematic hardening models reveal that the material with isotropic hardening has the higher load carrying capacity than that of kinematic hardening particularly for higher strain hardening.


1993 ◽  
Vol 28 (3) ◽  
pp. 187-196 ◽  
Author(s):  
S J Hardy ◽  
A R Gowhari-Anaraki

The finite element method is used to study the monotonic and cyclic elastic-plastic stress and strain characteristics of hollow tubes with axisymmetric internal projections subjected to monotonic and repeated axial loading. Two geometries having low and high elastic stress concentration factors are considered in this investigation, and the results are complementary to previously published data. For cyclic loading, three simple material behaviour models, e.g., elastic-perfectly-plastic, isotropic hardening, and kinematic hardening are assumed. All results have been normalized with respect to material properties so that they can be applied to all geometrically similar components from other materials which may be represented by the same material models. Finally, normalized maximum monotonic strain and steady state strain range, predicted in the present investigation and from previously published data, are plotted as a function of the nominal load for different material hardening assumptions and different elastic stress concentration factors. These plots can be used in the low cycle fatigue design of such geometrically similar components.


Holzforschung ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Lipeng Zhang ◽  
Qifang Xie ◽  
Baozhuang Zhang ◽  
Long Wang ◽  
Jitao Yao

AbstractA 3D combined elastic-plastic damage constitutive model for wood is proposed within the theoretical framework of classical plasticity and continuum damage mechanics (CDM). The model is able to describe the various behavior of wood under loading, including the orthotropic elasticity, strengths inequality under tension and compression in each orthotropic direction, ductile softening under longitudinal compression, brittle failure under transverse tension, and parallel shearing, densification hardening under transverse compression. Hoffman criterion and a set of eight separate failure criteria were used to define wood yielding and damage initiation, respectively. Isotropic hardening was assumed after yielding and defined by an exponential type function. The constitutive model was implicitly discretized using backward Euler method, solved through the return mapping algorithm and implemented into ABAQUS through the user-defined material subroutine (UMAT). The proposed model was firstly verified by material property tests considering different stress states: monotonic and repeated tension and compression (in both parallel and perpendicular-to-grain directions), parallel-to-grain shearing, and the interactions between perpendicular-to-grain compression/tension and parallel-to-grain shearing, etc. Mechanical behavior of typical structural elements was further simulated to validate the proposed constitutive model.


Author(s):  
Érika Aparecida da Silva ◽  
Marcelo dos Santos Pereira ◽  
Jean Pierre Faye ◽  
Rosinei Batista Ribeiro ◽  
Nilo Antonio de Sousa Sampaio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document