Effect of phosphate rock and triple superphosphate on soil phosphorus fractions and their plant-availability and downward movement in two volcanic ash soils under Pinus radiata plantations in New Zealand

2008 ◽  
Vol 82 (1) ◽  
pp. 75-88 ◽  
Author(s):  
A. A. Rivaie ◽  
P. Loganathan ◽  
J. D. Graham ◽  
R. W. Tillman ◽  
T. W. Payn
Clay Minerals ◽  
1973 ◽  
Vol 10 (2) ◽  
pp. 127-130 ◽  
Author(s):  
N. Yoshinaga ◽  
J. M. Tait ◽  
R. Soong

1991 ◽  
Vol 30 (2) ◽  
pp. 91-101
Author(s):  
Mamoru HOSONO ◽  
Yutaka OBA ◽  
Takashi SASE ◽  
Tohru UTSUGAWA ◽  
Kiyoyuki AOKI

Author(s):  
S.F. Ledgard ◽  
B.S. Thorrold ◽  
A.G. Sinclair ◽  
S.S.S. Rajan ◽  
D.C. Edmeades

Longlife' phosphatic fertiliser is manufactured in New Zealand by mixing reactive phosphate rock (RPR) with single superphosphate (SSP) when the SSP is at an ex-den stage. Commercially produced Longlife (70:30 SSP:RPR) was evaluated in 6 field mowing trials in the North Island over 3 or4 years. Also, a 5050 (SSP:RPR) Longlife-type product was examined in 5 field trials throughout New Zealand over 5 or 6 years. Longlife was compared against SSP and/or triple superphosphate (TSP) in all trials, and RPR treatments were included in 7 trials. In all trials with commercially produced Longlife, the pasture response to Longlife tended to be less than that to SSP or TSP in the first 2 years and was significantly different (P 6.0 and/or rainfall ~800 mm/year). Keywords field trials, Longlife, phosphate, reactive phosphate rock, superphosphate


1997 ◽  
Vol 37 (8) ◽  
pp. 885 ◽  
Author(s):  
M. J. McLaughlin ◽  
N. K. Fleming ◽  
P. G. Simpson ◽  
M. D. A. Bolland ◽  
R. J. Gilkes ◽  
...  

Summary. Field-based cutting trials, which formed part of the National Reactive Phosphate Rock Project, were established across Australia in a range of environments to evaluate the agronomic effectiveness of 5 phosphate rocks, and 1 partially acidulated phosphate rock, relative to either single superphosphate or triple superphosphate. The phosphate rocks differed in reactivity. Sechura (Bayovar) and North Carolina phosphate rocks were highly reactive (>70% solubility in 2% formic acid), whilst Khouribja (Moroccan) and Hamrawein (Egypt) phosphate rock were moderately reactive. Duchess phosphate rock from Queensland was relatively unreactive (<45% solubility in 2% formic acid). Phosphate rock effectiveness was assessed by measuring pasture production over a range of phosphorus levels, and by monitoring bicarbonate-soluble phosphorus extracted from soil samples collected before the start of each growing season. Other treatments included single large applications of triple superphosphate, partially acidulated phosphate rock and North Carolina phosphate rock applied at 2 rates, and the application of monocalcium phosphate and North Carolina phosphate rock sources without sulfur to evaluate the importance of sulfur in the potential use of phosphate rock fertilisers at each site. A broad range of environments were represented over the 30 sites which were based on pastures using annual and/or perennial legumes and perennial grasses. Rainfall across the network of sites ranged from 560 to 4320 mm, soil pH (CaCl2) from 4.0 to 5.1, and Colwell-extractable phosphorus ranged from 3 to 47 µg/g before fertiliser application. Two core experiments were established at each site. The first measured the effects of phosphate rock reactivity on agronomic effectiveness, while the second measured the effects of the degree of water solubility of the phosphorus source on agronomic effectiveness. The National Reactive Phosphate Rock Project trials gave the opportunity to confirm the suitability of accepted procedures to model fertiliser response and to develop new approaches for comparing different fertiliser responses. The Project also provided the framework for subsidiary studies such as the effect of fertiliser source on soil phosphorus extractability, cadmium and fluorine concentrations in herbage, evaluation of soil phosphorus tests, and the influence of particle size on phosphate rock effectiveness. The National Reactive Phosphate Rock Project presents a valuable model for a large, Australia-wide, collaborative team approach to an important agricultural issue. The use of standard and consistent experimental methodologies at every site ensured that maximum benefit was obtained from data generated. The aims, rationale and methods used for the experiments across the network are presented and discussed.


2005 ◽  
Vol 45 (3) ◽  
pp. 9-20 ◽  
Author(s):  
VAUGHAN MEYER ◽  
TAM LARKIN ◽  
MICHAEL PENDER

Sign in / Sign up

Export Citation Format

Share Document