scholarly journals Rotation of the Stress Tensor in a Westerly Granite Sample During the Triaxial Compression Test

Author(s):  
Szymon Cielesta ◽  
Beata Orlecka-Sikora ◽  
Musa Adebayo Idris

AbstractWe simulated the spatiotemporal modelling of 3D stress and strain distributions during the triaxial compression laboratory test on a westerly granite sample using finite-difference numerical modelling implemented with FLAC3D software. The modelling was performed using a ubiquitous joint constitutive law with strain softening. The applied procedure is capable of reproducing the macroscopic stress and strain evolution in the sample during triaxial deformation until a failure process occurs. In addition, we calculated focal mechanisms of acoustic emission (AE) events and resolved local stress field orientations. This detailed stress information was compared with that from numerical modelling. The comparison was made based on the 3D rotation angle between the cardinal axes of the two stress tensors. To infer the differences in rotation, we applied ANOVA. We identified the two time levels as the plastic deformation phase and the after-failure phase. Additionally, we introduced the bin factor, which describes the location of the rotation scores in the rock sample. The p values of the test statistics F for the bin and phase effects are statistically significant. However, the interaction between them is insignificant. We can, therefore, conclude that there was a significant difference in the time between the rotation means in the particular bins, and we ran post hoc tests to obtain more information where the differences between the groups lie. The largest rotation of the stress field provided by the focal mechanisms of AE events from the numerically calculated stress field is observed in the edge bins, which do not frame the damage zone of the sample.

2021 ◽  
Vol 8 ◽  
Author(s):  
Yan-Shuang Yang ◽  
Wei Cheng ◽  
Zhan-Rong Zhang ◽  
Hao-Yuan Tian ◽  
Kai-Yue Li ◽  
...  

The energy dissipation usually occurs during rock failure, which can demonstrate the meso failure process of rock in a relatively accurate way. Based on the results of conventional triaxial compression experiments on the Jinping marble, a numerical biaxial compression model was established by PFC2D to observe the development of the micro-cracks and energy evolution during the test, and then the laws of crack propagation, energy dissipation and damage evolution were analyzed. The numerical simulation results indicate that both the crack number and the total energy dissipated during the loading process increase with confining pressures, which is basically consistent with the experiment results. Two damage variables were presented in terms of the density from other researchers’ results and energy dissipation from numerical simulation, respectively. The energy-based damage variable varies with axial strain in the shape of “S,” and approaches one more closely than that based on density at the final failure period. The research in the rock failure from the perspective of energy may further understand the mechanical behavior of rocks.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Zhiqiang Li ◽  
Guofeng Liu ◽  
Shuqian Duan ◽  
Shufeng Pei ◽  
Changgen Yan

Geological strength index GSI, disturbance factor (D), material constant mi, and uniaxial compressive strength σci of the intact rock are essential input parameters IPs of the Hoek–Brown H−B criterion. Mechanical parameters MPs of the engineering rock mass, including elastic modulus E, cohesion c, and internal friction angle φ estimated by the H–B criterion, and the predicted excavation response of surrounding rock, including the displacement and excavation damage zone EDZ based on the MPs, are of high relevance with the four IPs of the H–B criterion. In this paper, the deep and huge underground cavern excavated in basalt from a hydropower station under construction in the southwest of China is used to analyse the sensitivity of the IPs on the MPs, the displacement, and EDZ of the surrounding rock mass. Firstly, the H–B criterion is applied to estimate the MPs, among which the IPs are obtained from a series of in situ and laboratory tests, including borehole camera observation, wave velocity test, uniaxial and triaxial compression tests, and so on. Secondly, the sensitivity relationships between IPs, MPs, and prediction results of displacement and EDZ are established and described quantitatively by the sensitivity factor (si). Results show that the MPs of the rock mass are more sensitive to GSI and D⋅GSI and σci are high-sensitivity parameters affecting the displacement and EDZ. Finally, the variations in the estimated MPs and associated prediction results concerning excavation response, which are caused by the uncertainties in the determination of the IPs, are further quantified. This study provides a straightforward assessment for the variability of the rock mass parameters estimated by the H–B criterion. It also gives a valuable reference to similar geotechnical engineering for the determination of rock mass parameters in the preliminary design.


Sign in / Sign up

Export Citation Format

Share Document