New sources of compact spike morphology determined by the genes on chromosome 5A in hexaploid wheat

2011 ◽  
Vol 59 (6) ◽  
pp. 1115-1124 ◽  
Author(s):  
K. Kosuge ◽  
N. Watanabe ◽  
V. M. Melnik ◽  
L. I. Laikova ◽  
N. P. Goncharov
1974 ◽  
Vol 16 (1) ◽  
pp. 145-154 ◽  
Author(s):  
E. R. Kerber ◽  
G. G. Rowland

All 15 hexaploid wheats (2n = 42 = AABBDD) synthesized from various combinations of nine tetraploid wheats (2n = 28 = AABB) and seven forms of Aegilops squarrosa L. (2n = 14 = DD) were non-free-threshing, regardless of the presence or absence of the Q factor. Monosomic and telosomic analysis of synthetic hexaploids RL 5404 and RL 5406, produced from crosses of Tetra Canthatch (the AABB component extracted from the common wheat cultivar Canthatch) with two forms of Ae. squarrosa, revealed the presence of a partially dominant gene for tenacious glumes, Tg, on chromosome 2Dα. This gene, derived from the squarrosa parent, inhibited the expression of Q located on chromosome 5A. The recessive allele tg as well as Q must be present for the expression of the free-threshing character in hexaploid wheat. On the assumption that Ae. squarrosa of the past possessed Tg, as apparently do all extant forms, it is hypothesized that the primitive hexaploid progenitor of free-threshing hexaploid wheat also carried this gene and, therefore, was non-free-threshing. The mutation from Tg to tg is presumed to have occurred at the hexaploid level.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 58
Author(s):  
Irina G. Adonina ◽  
Andrey B. Shcherban ◽  
Maremyana V. Zorina ◽  
Sabina P. Mehdiyeva ◽  
Ekaterina M. Timonova ◽  
...  

Vaviloid spike branching, also called sham ramification, is a typical trait of Triticum vavilovii Jakubz. and is characterized by a lengthening of the spikelet axis. In this article, we present the results of a study of three triticale–wheat hybrid lines with differences in terms of the manifestation of the vaviloid spike branching. Lines were obtained by crossing triticale with hexaploid wheat, T. aestivum var. velutinum. The parental triticale is a hybrid of synthetic wheat (T. durum × Ae. tauschii var. meyrei) with rye, S. cereale ssp. segetale. Line 857 has a karyotype corresponding to hexaploid wheat and has a spike morphology closest to normal, whereas Lines 808/1 and 844/4 are characterized by the greatest manifestation of vaviloid spike branching. In Lines 808/1 and 844/4, we found the substitution 2RL(2DL). The karyotypes of the latter lines differ in that a pair of telocentric chromosomes 2DS is detected in Line 808/1, and these telocentrics are fused into one unpaired chromosome in Line 844/4. Using molecular genetic analysis, we found a deletion of the wheat domestication gene Q located on 5AL in the three studied hybrid lines. The deletion is local since an analysis of the adjacent gene B1 showed the presence of this gene. We assume that the manifestation of vaviloid spike branching in two lines (808/1 and 844/4) is associated with a disturbance in the joint action of genes Q and AP2L2-2D, which is another important gene that determines spike morphology and is located on 2DL.


Crop Science ◽  
1982 ◽  
Vol 22 (1) ◽  
pp. 85-88 ◽  
Author(s):  
E. L. Deckard ◽  
N. D. Williams ◽  
J. J. Hammond ◽  
L. R. Joppa

Crop Science ◽  
1995 ◽  
Vol 35 (6) ◽  
pp. 1603-1607 ◽  
Author(s):  
H. W. Ohm ◽  
H. C. Sharma ◽  
F. L. Patterson ◽  
R. H. Ratcliffe ◽  
M. Obanni

2021 ◽  
Author(s):  
Mei Zheng ◽  
Jingchen Lin ◽  
Xingbei Liu ◽  
Wei Chu ◽  
Jinpeng Li ◽  
...  

Abstract Polyploidy occurs prevalently and plays an important role during plant speciation and evolution. This phenomenon suggests polyploidy could develop novel features that enable them to adapt wider range of environmental conditions compared with diploid progenitors. Bread wheat (Triticum aestivum L., BBAADD) is a typical allohexaploid species and generally exhibits greater salt tolerance than its tetraploid wheat progenitor (BBAA). However, little is known about the underlying molecular basis and the regulatory pathway of this trait. Here, we show that the histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of hexaploid wheat. Salinity-induced TaHAG1 expression was associated with tolerance variation in polyploidy wheat. Overexpression, silencing and CRISPR-mediated knockout of TaHAG1 validated the role of TaHAG1 in salinity tolerance of wheat. TaHAG1 contributed to salt tolerance by modulating ROS production and signal specificity. Moreover, TaHAG1 directly targeted a subset of genes that are responsible for hydrogen peroxide production, and enrichment of TaHAG1 triggered increased H3 acetylation and transcriptional upregulation of these loci under salt stress. In addition, we found the salinity-induced TaHAG1-mediated ROS production pathway is involved in salt tolerance difference of wheat accessions with varying ploidy. Our findings provide insight into the molecular mechanism of how an epigenetic regulatory factor facilitates adaptability of polyploidy wheat and highlights this epigenetic modulator as a strategy for salt tolerance breeding in bread wheat.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 513
Author(s):  
Pao Theen See ◽  
Caroline S. Moffat

After nearly 40 years of DNA molecular marker development in plant breeding, the wheat research community has amassed an extensive collection of molecular markers which have been widely and successfully used for selection of agronomic, physiological and disease resistance traits in wheat breeding programs. Tan spot is a major fungal disease of wheat and a significant global economic challenge and is caused by the necrotrophic fungal pathogen Pyrenophora tritici-repentis (Ptr). Here, the potential for using a PCR-based marker (Ta1AS3422) present on the short arm of wheat chromosome 1A, was evaluated for effectiveness in distinguishing tan spot disease susceptibility. The marker was initially screened against 40 commercial Australian hexaploid wheat varieties, and those that amplified the marker had an overall lower disease score (2.8 ± 0.7 for seedlings and 2.4 ± 0.4 for plants at the tillering stage), compared to those lacking the marker which exhibited a higher disease score (3.6 ± 0.8 for both growth stages). The potential of Ta1AS3422 as a marker for the tan spot disease response was further assessed against a panel of 100 commercial Australian hexaploid wheat varieties. A significant association was observed between marker absence/presence and tan spot disease rating (Pearson’s chi-squared test, χ2 (6) = 20.53, p = 0.002), with absence of Ta1AS3422 associated with susceptibility. This simple and cost-effective PCR-based marker may be useful for varietal improvement against tan spot, although further work is required to validate its effectiveness.


Sign in / Sign up

Export Citation Format

Share Document