Nutritional composition and cooking characteristics of tepary bean (Phaseolus acutifolius Gray) in comparison with common bean (Phaseolus vulgaris L.)

2016 ◽  
Vol 64 (5) ◽  
pp. 935-953 ◽  
Author(s):  
Timothy G. Porch ◽  
Karen Cichy ◽  
Weijia Wang ◽  
Mark Brick ◽  
James S. Beaver ◽  
...  
Author(s):  
Ligia Carmenza Muñoz ◽  
Mariela Rivera ◽  
Jaime E. Muñoz ◽  
Fatma Sarsu ◽  
Idupulapati M. Rao

Heat stress is a major limitation to grain yield in common bean (Phaseolus vulgaris L.). Tepary bean (Phaseolus acutifolius A. Gray) is better adapted to heat stress than common bean. Ten tepary bean accessions, four common bean genotypes and four interspecific lines involving P. vulgaris and P. acutufolius, P. coccineus and P. dumosus were evaluated for tolerance to heat stress conditions induced under greenhouse conditions and these were compared to plants grown under ambient temperatures. The high temperature treatment was 29 ±5 °C during the day and was >24 °C (up to 27 °C) during the night, while the ambient temperature (AT) treatment was 25 ±5 °C during the day and 19± 2 °C at night. The genotypic differences were evaluated for morpho-physiological characteristics of shoot and root and also yield components. The Genotype and Genotype × Temperature interactions were significant for all shoot and root morpho-physiological characteristics evaluated. Higher temperature (HT) significantly affected leaf photosynthetic efficiency, total chlorophyll content, and stomatal conductance. The effect was positive or negative, depending on the genotypes. Tepary accessions showed reduced total chlorophyll content, while common bean genotypes and the interspecific lines were less affected. Tepary accessions also showed reduced stomatal conductance, but increased leaf photosynthetic efficiency under HT. Common bean genotypes increased stomatal conductance and decreased leaf photosynthetic efficiency. High temperature decreased total root length, specific root length and pod biomass compared to ambient conditions, but there was no marked effect on pollen viability of the tested genotypes. The superior adaptation of tepary germplasm accessions to high temperature is attributed to their ability to regulate stomatal opening and photosynthetic efficiency, together with a superior ability to remobilize photosynthates from older leaves to pods during physiological maturity


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1978
Author(s):  
Esteban Burbano-Erazo ◽  
Rommel Igor León-Pacheco ◽  
Carina Cecilia Cordero-Cordero ◽  
Felipe López-Hernández ◽  
Andrés J. Cortés ◽  
...  

Heat and drought are major stresses that significantly reduce seed yield of the common bean (Phaseolus vulgaris L.). In turn, this affects the profitability of the crop in climatic-vulnerable tropical arid regions, which happen to be the poorest and in most need of legume proteins. Therefore, it is imperative to broaden the sources of heat and drought resistance in the common bean by examining closely related species from warmer and drier environments (i.e., Tepary bean, P. acutifolius A. Gray), while harnessing such variation, typically polygenic, throughout advanced interspecific crossing schemes. As part of this study, interspecific congruity backcrosses for high temperature and drought tolerance conditions were characterized across four localities in coastal Colombia. Genotypes with high values of CO2 assimilation (>24 µmol CO2 m−2 s−1), promising yield scores (>19 g/plant), and high seed mineral content (Fe > 100 mg/kg) were identified at the warmest locality, Motilonia. At the driest locality, Caribia, one intercrossed genotype (i.e., 85) and the P. acutifolius G40001 control exhibited sufficient yield for commercial production (17.76 g/plant and 12.76 g/plant, respectively). Meanwhile, at southernmost Turipaná and Carmen de Bolívar localities, two clusters of genotypes exhibited high mean yield scores with 33.31 g/plant and 17.89 g/plant, respectively, and one genotype had an increased Fe content (109.7 mg/kg). Overall, a multi-environment AMMI analysis revealed that genotypes 13, 27, 82, and 84 were environmentally stable with higher yield scores compared to the Tepary control G40001. Ultimately, this study allows us to conclude that advanced common bean × Tepary bean interspecific congruity backcrosses are capable of pyramiding sufficient polygenic tolerance responses for the extreme weather conditions of coastal Colombia, which are likely to worsen due to climate change. Furthermore, some particular recombination events (i.e., genotype 68) show that there may be potential to couple breeding for heat and drought tolerance with Fe mineral biofortification, despite a prevalent trade-off, as a way to fight malnutrition of marginalized communities in tropical regions.


1998 ◽  
Vol 17 (8) ◽  
pp. 626-630 ◽  
Author(s):  
M. A. Zambre ◽  
J. De Clercq ◽  
E. Vranová ◽  
M. Van Montagu ◽  
G. Angenon ◽  
...  

2021 ◽  
Author(s):  
Sofora Jan ◽  
Irshad Ahmad Rather ◽  
Parvaze Ahmad Sofi ◽  
Mohd Altaf Wani ◽  
Farooq Ahmad Sheikh ◽  
...  

2021 ◽  
Author(s):  
Rosa Cecilia Viscarra‐Torrico ◽  
Aga Pajak ◽  
Alvaro Soler Garzón ◽  
BaiLing Zhang ◽  
Sudhakar Pandurangan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document