SCoT markers provide insight into the genetic diversity, population structure and phylogenetic relationships among three Pistacia species of Iran

Author(s):  
Abdolkarim Zarei ◽  
Javad Erfani-Moghadam
Author(s):  
R. H. Sammour ◽  
M. A. Karam ◽  
Y. S. Morsi ◽  
R. M. Ali

Abstract The present study aimed to assess population structure and phylogenetic relationships of nine subspecies of Brassica rapa L. represented with thirty-five accessions cover a wide range of species distribution area using isozyme analysis in order to select more diverse accessions as supplementary resources that can be utilized for improvement of B. napus. Enzyme analysis resulted in detecting 14 putative polymorphic loci with 27 alleles. Mean allele frequency 0.04 (rare alleles) was observed in Cat4A and Cat4B in sub species Oleifera accession CR 2204/79 and in subspecies trilocularis accessions CR 2215/88 and CR 2244/88. The highest genetic diversity measures were observed in subspecies dichotoma, accession CR 1585/96 (the highest average of observed (H0) and expected heterozygosity (He), and number of alleles per locus (Ae)). These observations make this accession valuable genetic resource to be included in breeding programs for the improvement of oilseed B. napus. The average fixation index (F) is significantly higher than zero for the analysis accessions indicating a significant deficiency of heteozygosity. The divergence among subspecies indicated very great genetic differentiation (FST = 0.8972) which means that about 90% of genetic diversity is distributed among subspecies, while 10% of the diversity is distributed within subspecies. This coincides with low value of gene flow (Nm = 0.0287). B. rapa ssp. oleifera (turnip rape) and B. rapa ssp. trilocularis (sarson) were grouped under one cluster which coincides with the morphological classification.


Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1309
Author(s):  
Veronika Kharzinova ◽  
Arsen Dotsev ◽  
Anastasiya Solovieva ◽  
Olga Sergeeva ◽  
Georgiy Bryzgalov ◽  
...  

To examine the genetic diversity and population structure of domestic reindeer, using the BovineHD BeadChip, we genotyped reindeer individuals belonging to the Nenets breed of the five main breeding regions, the Even breed of the Republic of Sakha, the Evenk breed of the Krasnoyarsk and Yakutia regions, and the Chukotka breed of the Chukotka region and its within-breed ecotype, namely, the Chukotka–Khargin, which is bred in Yakutia. The Chukotka reindeer was shown to have the lowest genetic diversity in terms of the allelic richness and heterozygosity indicators. The principal component analysis (PCA) results are consistent with the neighbor-net tree topology, dividing the reindeer into groups according to their habitat location and origin of the breed. Admixture analysis indicated a genetic structuring of two groups of Chukotka origin, the Even breed and most of the geographical groups of the Nenets breed, with the exception of the Murmansk reindeer, the gene pool of which was comprised of the Nenets and apparently the native Sami reindeer. The presence of a genetic component of the Nenets breed in some reindeer inhabiting the Krasnoyarsk region was detected. Our results provide a deeper insight into the current intra-breeding reindeer genetic diversity, which is an important requirement for future reindeer herding strategies and for animal adaptation to environmental changes.


2019 ◽  
Vol 85 (20) ◽  
Author(s):  
Moein Khojasteh ◽  
S. Mohsen Taghavi ◽  
Pejman Khodaygan ◽  
Habiballah Hamzehzarghani ◽  
Gongyou Chen ◽  
...  

ABSTRACT This study provides a phylogeographic insight into the population diversity of Xanthomonas translucens strains causing bacterial leaf streak disease of small-grain cereals in Iran. Among the 65 bacterial strains isolated from wheat, barley, and gramineous weeds in eight Iranian provinces, multilocus sequence analysis and typing (MLSA and MLST) of four housekeeping genes (dnaK, fyuA, gyrB, and rpoD), identified 57 strains as X. translucens pv. undulosa, while eight strains were identified as X. translucens pv. translucens. Although the pathogenicity patterns on oat and ryegrass weed species varied among the strains, all X. translucens pv. undulosa strains were pathogenic on barley, Harding’s grass, rye (except for XtKm35) and wheat, and all X. translucens pv. translucens strains were pathogenic on barley and Harding’s grass, while none of the latter group was pathogenic on rye or wheat (except for XtKm18). MLST using the 65 strains isolated in Iran, as well as the sequences of the four genes from 112 strains of worldwide origin retrieved from the GenBank database, revealed higher genetic diversity (i.e., haplotype frequency, haplotype diversity, and percentage of polymorphic sites) among the Iranian population of X. translucens than among the North American strains of the pathogen. High genetic diversity of the BLS pathogen in Iran was in congruence with the fact that the Iranian Plateau is considered the center of origin of cultivated wheat. However, further studies using larger collections of strains are warranted to precisely elucidate the global population diversity and center of origin of the pathogen. IMPORTANCE Bacterial leaf streak (BLS) of small-grain cereals (i.e., wheat and barley) is one of the economically important diseases of gramineous crops worldwide. The disease occurs in many countries across the globe, with particular importance in regions characterized by high levels of precipitation. Two genetically distinct xanthomonads—namely, Xanthomonas translucens pv. undulosa and X. translucens pv. translucens—have been reported to cause BLS disease on small-grain cereals. As seed-borne pathogens, the causal agents are included in the A2 list of quarantine pathogens by the European and Mediterranean Plant Protection Organization (EPPO). Despite its global distribution and high economic importance, the population structure, genetic diversity, and phylogeography of X. translucens remain undetermined. This study, using MLSA and MLST, provides a global-scale phylogeography of X. translucens strains infecting small-grain cereals. Based on the diversity parameters, neutrality indices, and population structure, we observe higher genetic diversity of the BLS pathogen in Iran, which is geographically close to the center of origin of common wheat, than has so far been observed in other areas of the world, including North America. The results obtained in this study provide a novel insight into the genetic diversity and population structure of the BLS pathogen of small-grain cereals on a global scale.


2015 ◽  
Vol 27 (3) ◽  
pp. 685-697 ◽  
Author(s):  
Parvaneh Iranjo ◽  
Daryuoosh NabatiAhmadi ◽  
Karim Sorkheh ◽  
Hamid Rajabi Memeari ◽  
Sezai Ercisli

2015 ◽  
Vol 105 (6) ◽  
pp. 815-824 ◽  
Author(s):  
Marin Talbot Brewer ◽  
Manisha Rath ◽  
Hao-Xi Li

Combining population genetics with epidemiology provides insight into the population biology of pathogens, which could lead to improved management of plant diseases. Gummy stem blight, caused by three closely related species of Stagonosporopsis—Stagonosporopsis cucurbitacearum (syn. Didymella bryoniae), S. citrulli, and S. caricae—is a devastating disease of cucurbits worldwide. Sources of inoculum for epidemics, mechanisms of dispersal, and the mating system of these species are not well understood. To improve our knowledge of gummy stem blight epidemiology, we developed 18 polymorphic microsatellite markers by combining microsatellite motif enrichment with next-generation sequencing. When tested on 46 isolates from diverse cucurbit hosts and regions, the markers were robust for the dominant and widely distributed S. citrulli. Within this species, we found no population structure based on broad-scale geographic region or host of origin. Using the microsatellites, a rapid polymerase chain reaction-based method was developed to distinguish the three morphologically similar species causing gummy stem blight. To better understand dispersal, reproduction, and fine-scale genetic diversity of S. citrulli within and among watermelon fields, 155 isolates from two field populations in Georgia, United States were genotyped with the 18 microsatellite loci. Although dominant and widespread clones were detected, we found relatively high genotypic diversity and recombinant genotypes consistent with outcrossing. Significant population genetic structure between the two field populations demonstrated that there is regional geographic structure and limited dispersal among fields. This study provides insight into the fine-scale genetic diversity and reproductive biology of the gummy stem blight pathogen S. citrulli in the field.


2021 ◽  
Vol 9 (12) ◽  
pp. 2526
Author(s):  
Aleksandra Uzelac ◽  
Ivana Klun ◽  
Vladimir Ćirković ◽  
Neda Bauman ◽  
Branko Bobić ◽  
...  

In Europe, Toxoplasma gondii lineage II is dominant, and ToxoDB#1 the most frequently occurring genotype. The abundance of lineage III genotypes varies geographically and lineage I are rare, yet present in several regions of the continent. Data on the T. gondii population structure in southeastern Europe (SEE) are scarce, yet necessary to appreciate the diversity of the species in Europe. To help fill this gap, we genotyped 67 strains from nine species of intermediate hosts in Serbia by MnPCR-RFLP, determined the population structure, and identified the genotypes using ToxoDB. A neighbor-joining tree was also constructed from the isolates genotyped on nine loci. While 42% of the total genotype population consisted of ToxoDB#1 and ToxoDB#2, variant genotypes of both lineages comprised 46% of the population in wildlife and 28% in domestic animals and humans. One genotype of Africa 4 lineage was detected in a human sample. Interestingly, the findings include one lineage III variant and one II/III recombinant isolate with intercontinental distribution, which appear to be moderately related to South American genotypes. Based on these findings, SEE is a region of underappreciated T. gondii genetic diversity and possible strain exchange between Europe and Africa.


2018 ◽  
Vol 143 (6) ◽  
pp. 399-408
Author(s):  
Yuan Yu ◽  
Chunxian Chen ◽  
Ming Huang ◽  
Qibin Yu ◽  
Dongliang Du ◽  
...  

Citrus (Citrus sp.) germplasm collections are a valuable resource for citrus genetic breeding studies, and further utilization of the resource requires knowledge of their genotypic and phylogenetic relationships. Diverse citrus accessions, including citron (Citrus medica), mandarin (Citrus reticulata), pummelo (Citrus maxima), papeda (Papeda sp.), trifoliate orange (Poncirus trifoliata), kumquat (Fortunella sp.), and related species, have been housed at the Florida Citrus Arboretum, Winter Haven, FL, but the accessions in the collection have not been genotyped. In this study, a collection of 80 citrus accessions were genotyped using 1536 sweet orange–derived single nucleotide polymorphism (SNP) markers, to determine their SNP fingerprints and to assess genetic diversity, population structure, and phylogenetic relationships, and thereby to test the efficiency of using the single genotype-derived SNP chip with relatively low cost for these analyses. Phylogenetic relationships among the 80 accessions were determined by multivariate analysis. A model-based clustering program detected five basic groups and revealed that C. maxima introgressions varied among mandarin cultivars and segregated in mandarin F1 progeny. In addition, reciprocal differences in C. maxima contributions were observed among citranges (Citrus sinensis × P. trifoliata vs. P. trifoliata × C. sinensis) and may be caused by the influence of cytoplasmic DNA and its effect on selection of cultivars. Inferred admixture structures of many secondary citrus species and important cultivars were confirmed or revealed, including ‘Bergamot’ sour orange (Citrus aurantium), ‘Kinkoji’ (C. reticulata × Citrus paradisi), ‘Hyuganatsu’ orange (Citrus tamurana), and palestine sweet lime (Citrus aurantifolia). The relatively inexpensive SNP array used in this study generated informative genotyping data and led to good consensus and correlations with previously published observations based on whole genome sequencing (WGS) data. The genotyping data and the phylogenetic results may facilitate further exploitation of interesting genotypes in the collection and additional understanding of phylogenetic relationships in citrus.


Sign in / Sign up

Export Citation Format

Share Document