Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility

2015 ◽  
Vol 80 (1) ◽  
pp. 23-36 ◽  
Author(s):  
Faisal Islam ◽  
Tahira Yasmeen ◽  
Muhammad S. Arif ◽  
Shafaqat Ali ◽  
Basharat Ali ◽  
...  
Diversity ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 24
Author(s):  
Ling Min Jiang ◽  
Yong Jae Lee ◽  
Ho Le Han ◽  
Myoung Hui Lee ◽  
Jae Cheol Jeong ◽  
...  

Jejubacter calystegiae KSNA2T, a moderately halophilic, endophytic bacterium isolated from beach morning glory (Calystegia soldanella), was determined to be a novel species in a new genus in the family Enterobacteriaceae. To gain insights into the genetic basis of the salinity stress response of strain KSNA2T, we sequenced its genome using two complementary sequencing platforms (Illumina HiSeq and PacBio RSII). The genome contains a repertoire of metabolic pathways, such as those for nitrogen, phosphorus, and some amino acid metabolism pathways. Functional annotation of the KSNA2T genome revealed several genes involved in salt tolerance pathways, such as those encoding sodium transporters, potassium transporters, and osmoprotectant enzymes. Plant growth-promoting bacteria-based experiments indicated that strain KSNA2T promotes the germination of vegetable seeds in saline conditions. Overall, the genetic and biological analyses of strain KSNA2T provide valuable insights into bacteria-mediated salt tolerance in agriculture.


2018 ◽  
Vol 64 (12) ◽  
pp. 968-978 ◽  
Author(s):  
Shiying Zhang ◽  
Cong Fan ◽  
Yongxia Wang ◽  
Yunsheng Xia ◽  
Wei Xiao ◽  
...  

Growth and productivity of rice is negatively affected by soil salinity. However, some salt-tolerant bacteria improve the health of plants under saline stress. In this study, 305 bacteria were isolated from paddy soil in Taoyuan, China. Among these, 162 strains were tested for salt-tolerance; 67.3%, 28.4%, and 9.3% of the strains could grow in media with NaCl concentrations of 50, 100, and 150 g/L, respectively. The phylogenic analysis of 74 of these 162 strains indicates that these bacteria belong to Bacillales (72%), Actinomycetales (22%), Rhizobiales (1%), and Oceanospirillales (4%). Among 162 strains, 30 salt-tolerant strains were screened for their plant-growth-promoting activities under axenic conditions at 3, 6, 9, and 12 g/L NaCl; 43%–97% of the strains could improve rice germination energy or germination capacity, while 63%–87% of the strains could increase shoot and root lengths. Among various plant-growth-promoting bacteria, TY0307 was the most effective strain for promoting the growth of rice, even at high salt stress. Its promotor effects were associated with its production of 1-aminocyclopropane-1-carboxycarboxylate deaminase, indole acetic acid, and siderophores; induction of proline accumulation; and reduction of the salt-induced malondialdehyde content. These results suggest that several strains isolated from paddy soil could improve rice salt tolerance and may be used in the development of biofertilizer.


2018 ◽  
Vol 209 ◽  
pp. 21-32 ◽  
Author(s):  
Muhammad Numan ◽  
Samina Bashir ◽  
Yasmin Khan ◽  
Roqayya Mumtaz ◽  
Zabta Khan Shinwari ◽  
...  

Proceedings ◽  
2021 ◽  
Vol 66 (1) ◽  
pp. 20
Author(s):  
Marika Pellegrini ◽  
Daniela M. Spera ◽  
Claudia Ercole ◽  
Maddalena del Gallo

The present work was aimed at investigating the effects of a four strains consortium—Azospirillum brasilense, Gluconacetobacter diazotrophicus, Herbaspirillum seropedicae, and Burkholderia ambifaria—on crops of Allium cepa L. and its soil health. The bacterial consortium was inoculated on seeds of two different onion varieties; inoculated seeds and control ones (treated with autoclaved inoculum) were sown in open-field and followed until harvest. Plant growth development parameters, as well as soil physico-chemical and molecular profiles (DNA extraction and 16S community sequencing on the Mi-Seq Illumina platform), were investigated. The results showed a positive influence of bacterial application on plant growth, with increased plant height (+18%), total chlorophylls (+42%), crop yields (+13%), and bulbs dry matter (+3%) than the control. The differences between control and treated experimental conditions were also underlined in the bulb extracts in terms of total phenolic contents (+25%) and antioxidant activities (+20%). Soil fertility and microbial community structure and diversity were also positively affected by the bacterial inoculum. At harvest, the soil with the presence of the bacterial consortium showed an increase of total organic carbon, organic matter, and available P and higher concentrations of nutrients than control. The ecological indexes calculated on the molecular profiles showed that community diversity was positively affected by the bacterial treatment. The present work allowed to remark the effective use of plant growth-promoting bacteria as a valid fertilization strategy to improve yield in productive landscapes, whilst safeguarding soil biodiversity.


Author(s):  
J. Monk ◽  
E. Gerard ◽  
S. Young ◽  
K. Widdup ◽  
M. O'Callaghan

Tall fescue (Festuca arundinacea) is a useful alternative to ryegrass in New Zealand pasture but it is slow to establish. Naturally occurring beneficial bacteria in the rhizosphere can improve plant growth and health through a variety of direct and indirect mechanisms. Keywords: rhizosphere, endorhiza, auxin, siderophore, P-solubilisation


2020 ◽  
Vol 53 (2) ◽  
Author(s):  
Muhammad Mubeen ◽  
Asghari Bano ◽  
Barkat Ali ◽  
Zia Ul Islam ◽  
Ashfaq Ahmad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document