COMBINED APPLICATION OF ARBUSCULAR MYCORRHIZAE FUNGI AND PLANT GROWTH PROMOTING BACTERIA IMPROVES GROWTH AND NUTRIENT UPTAKE EFFICIENCY OF PEA (Pisum sativum L.) PLANTS

2018 ◽  
Vol 17 (5) ◽  
pp. 73-86 ◽  
Author(s):  
Eriola Veselaj ◽  
Glenda Sallaku ◽  
Astrit Balliu
2020 ◽  
Author(s):  
Ekaterina N. Vasileva ◽  
Gulnar A. Akhtemova ◽  
Alexey M. Afonin ◽  
Alexey Borisov ◽  
Igor A. Tikhonovich ◽  
...  

Background. Endophytic microorganisms inhabit internal tissues of most plants. However, little is known about endophytic community of the garden pea (Pisum sativum L.), an agriculturally important crop. Materials and methods. Culturable endophytic bacteria were isolated from sterilized stems and leaves of three pea genotypes: K-8274 (cv. Vendevil), K-3358 (unnamed cultivar), and cv.Triumph. The taxonomic position of isolates was determined by 16S rRNA gene sequencing. The plant growth-promoting capabilityof identified bacteria was tested on the roots of watercress (Lepidium sativum L.). Results. In total, out of 118 morphotypes of culturable endophytic bacteria identified, for 80 the taxonomic position was determined. Proteobacteria and Firmicuteswere dominant phyla, and Actinobacteria were present in minority. Eight bacterial isolates demonstrated the plant growth-promoting capability, and one of them KV17 (Rahnella sp.) maintained this capability after several passages and prolonged storage. Conclusion.The plant growth-promoting bacteria isolated from pea stems and leaves can become a component of microbiological preparations.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 771
Author(s):  
Tiago Lopes ◽  
Catarina Cruz ◽  
Paulo Cardoso ◽  
Ricardo Pinto ◽  
Paula A. A. P. Marques ◽  
...  

Drought is a limiting factor for agricultural productivity. Climate change threatens to expand the areas of the globe subjected to drought, as well as to increase the severity and duration of water shortage. Plant growth-promoting bacteria (PGPB) are widely studied and applied as biostimulants to increase plant production and to enhance tolerance to abiotic and biotic constraints. Besides PGPB, studies on the potential of nanoparticles to be used as biostimulants are also thriving. However, many studies report toxicity of tested nanoparticles in bacteria and plants in laboratory conditions, but few studies have reported effects of nanoparticles towards bacterial cells and communities in the soil. The combined application of nanoparticles and PGPB as biostimulant formulations are poorly explored and it is important to unravel the potentialities of their combined application as a way to potentiate food production. In this study, Rhizobium sp. E20-8 and graphene oxide (GO) nanosheets were applied on container-grown maize seedlings in watered and drought conditions. Bacterial survival, seedling growth (dry weight), and biochemical endpoints (photosynthetic pigments, soluble and insoluble carbohydrates, proline, lipid peroxidation, protein, electron transport system, and superoxide dismutase) were evaluated. Results showed that the simultaneous exposure to GO and Rhizobium sp. E20-8 was able to alleviate the stress induced by drought on maize seedlings through osmotic and antioxidant protection by GO and mitigation of GO effects on the plant’s biochemistry by Rhizobium sp. E20-8. These results constitute a new lead on the development of biostimulant formulations to improve plant performance and increase food production in water-limited conditions.


Revista CERES ◽  
2018 ◽  
Vol 65 (3) ◽  
pp. 271-277 ◽  
Author(s):  
Raphael Oliveira de Melo ◽  
Hend Pereira de Oliveira ◽  
Klever Cristiano Silveira ◽  
Lílian Estrela Borges Baldotto ◽  
Marihus Altoé Baldotto

ABSTRACT Seed treatment with inoculants based on plant growth-promoting bacteria (PGPB) or the application of humic acids (HA) may increase the productivity of plants of agricultural interest. The hypothesis of this work is that it is possible to combine the effect of plant growth promoting characteristic of HA with the inoculation of PGPB selected strains in the treatment of maize seeds. Thus, providing superior responses than in single applications of both in the initial maize development. To meet this purpose, we conducted isolated application of HA or PGPB inoculation of Burkholderia gladioli and Rhizobium cellulosilyticum, and the combined application of PGPB and HA for treatment of maize seeds. At the end of the experiment (45 days after germination), the plants were evaluated biometrically, nutritionally and a bacteria count was performed in plants using the Most Probable Number technique. The results showed that it is possible to combine the effects of HA with the inoculation of selected strains of PGPB, obtaining superior responses to the isolated application of both. Thus, the use of HA-based bio-stimulants in combination with PGPB is positive and complementary compared to inputs generally used in the treatment of maize seeds.


Sign in / Sign up

Export Citation Format

Share Document