Effects of abscisic acid, jasmonic acid and salicylic acid on the content of phytochemicals and their gene expression profiles and biological activity in turnip (Brassica rapa ssp. rapa)

2016 ◽  
Vol 80 (3) ◽  
pp. 377-390 ◽  
Author(s):  
Muthu Thiruvengadam ◽  
Venkitasamy Baskar ◽  
Seung-Hyun Kim ◽  
Ill-Min Chung
2020 ◽  
Author(s):  
Alexander Calderwood ◽  
Jo Hepworth ◽  
Shannon Woodhouse ◽  
Lorelei Bilham ◽  
D. Marc Jones ◽  
...  

AbstractThe timing of the floral transition affects reproduction and yield, however its regulation in crops remains poorly understood. Here, we use RNA-Seq to determine and compare gene expression dynamics through the floral transition in the model species Arabidopsis thaliana and the closely related crop Brassica rapa. A direct comparison of gene expression over time between species shows little similarity, which could lead to the inference that different gene regulatory networks are at play. However, these differences can be largely resolved by synchronisation, through curve registration, of gene expression profiles. We find that different registration functions are required for different genes, indicating that there is no common ‘developmental time’ to which Arabidopsis and B. rapa can be mapped through gene expression. Instead, the expression patterns of different genes progress at different rates. We find that co-regulated genes show similar changes in synchronisation between species, suggesting that similar gene regulatory sub-network structures may be active with different wiring between them. A detailed comparison of the regulation of the floral transition between Arabidopsis and B. rapa, and between two B. rapa accessions reveals different modes of regulation of the key floral integrator SOC1, and that the floral transition in the B. rapa accessions is triggered by different pathways, even when grown under the same environmental conditions. Our study adds to the mechanistic understanding of the regulatory network of flowering time in rapid cycling B. rapa under long days and highlights the importance of registration methods for the comparison of developmental gene expression data.


2008 ◽  
Vol 74 (18) ◽  
pp. 5784-5791 ◽  
Author(s):  
Tiffany L. Weir ◽  
Valerie J. Stull ◽  
Dayakar Badri ◽  
Lily A. Trunck ◽  
Herbert P. Schweizer ◽  
...  

ABSTRACT Although Pseudomonas aeruginosa is an opportunistic pathogen that does not often naturally infect alternate hosts, such as plants, the plant-P. aeruginosa model has become a widely recognized system for identifying new virulence determinants and studying the pathogenesis of the organism. Here, we examine how both host factors and P. aeruginosa PAO1 gene expression are affected in planta after infiltration into incompatible and compatible cultivars of tobacco (Nicotiana tabacum L.). N. tabacum has a resistance gene (N) against tobacco mosaic virus, and although resistance to PAO1 infection is correlated with the presence of a dominant N gene, our data suggest that it is not a factor in resistance against PAO1. We did observe that the resistant tobacco cultivar had higher basal levels of salicylic acid and a stronger salicylic acid response upon infiltration of PAO1. Salicylic acid acts as a signal to activate defense responses in plants, limiting the spread of the pathogen and preventing access to nutrients. It has also been shown to have direct virulence-modulating effects on P. aeruginosa. We also examined host effects on the pathogen by analyzing global gene expression profiles of bacteria removed from the intracellular fluid of the two plant hosts. We discovered that the availability of micronutrients, particularly sulfate and phosphates, is important for in planta pathogenesis and that the amounts of these nutrients made available to the bacteria may in turn have an effect on virulence gene expression. Indeed, there are several reports suggesting that P. aeruginosa virulence is influenced in mammalian hosts by the availability of micronutrients, such as iron and nitrogen, and by levels of O2.


2018 ◽  
Author(s):  
Liru Cao ◽  
Xiaomin Lu ◽  
Pengyu Zhang ◽  
Lixia Ku ◽  
Guorui Wang ◽  
...  

AbstractDrought can severely limit plant growth and production. However, few studies have investigated gene expression profiles in maize during drought/re-watering. We compared drought-treated and water-sufficient maize plants by measuring their leaf relative water content, superoxide dismutase and peroxidase activities, proline content, and leaf gas exchange parameters (photosynthetic rates, stomatal conductance, and transpiration rates). We conducted RNA sequencing analyses to elucidate gene expression profiles and identify miRNAs that might be related to drought resistance. A GO enrichment analysis showed that the common DEGs (differently expressed genes) between drought-treated and control plants were involved in response to stimulus, cellular process, metabolic process, cell part, and binding and catalytic activity. Analyses of gene expression profiles revealed that 26 of the DEGs under drought encoded 10 enzymes involved in proline synthesis, suggesting that increased proline synthesis was a key part of the drought response. We also investigated cell wall-related genes and transcription factors regulating abscisic acid-dependent and -independent pathways. The expression profiles of the miRNAs miR6214-3p, miR5072-3p, zma-miR529-5p, zma-miR167e-5p, zma-miR167f-5p, and zma-miR167j-5p and their relevant targets under drought conditions were analyzed. These results provide new insights into the molecular mechanisms of drought tolerance, and may identify new targets for breeding drought-tolerant maize lines.Abbreviationsleaf relative water content: RWC, superoxide dismutase activity: SOD, peroxidase activity: POD, proline content: Pro, photosynthetic rates: Pn, stomatal conductance: Cond, transpiration rates: Tr.; quantitative real-time polymerase chain reaction: qPCR; abscisic acid; ABA; polyethylene glycol :PEG; Principal component analysis :PCA; polyacrylamide gel electrophoresis :PAGEHighlightThe study of physiology and molecular mechanism of maize laid a theoretical foundation for drought resistance breeding under drought stress and re-watering.


2019 ◽  
Vol 20 (19) ◽  
pp. 4916 ◽  
Author(s):  
Manoharan ◽  
Qi ◽  
Dhandapani ◽  
Chen ◽  
Rutherford ◽  
...  

Invasive plants are a huge burden on the environment, and modify local ecosystems by affecting the indigenous biodiversity. Invasive plants are generally less affected by pathogens, although the underlying molecular mechanisms responsible for their enhanced resistance are unknown. We investigated expression profiles of three defense hormones (salicylic acid, jasmonic acid, and ethylene) and their associated genes in the invasive weed, Alternanthera philoxeroides, and its native congener, A. sessilis, after inoculation with Rhizoctonia solani. Pathogenicity tests showed significantly slower disease progression in A. philoxeroides compared to A. sessilis. Expression analyses revealed jasmonic acid (JA) and ethylene (ET) expressions were differentially regulated between A. philoxeroides and A. sessilis, with the former having prominent antagonistic cross-talk between salicylic acid (SA) and JA, and the latter showing weak or no cross-talk during disease development. We also found that JA levels decreased and SA levels increased during disease development in A. philoxeroides. Variations in hormonal gene expression between the invasive and native species (including interspecific differences in the strength of antagonistic cross-talk) were identified during R. solani pathogenesis. Thus, plant hormones and their cross-talk signaling may improve the resistance of invasive A. philoxeroides to pathogens, which has implications for other invasive species during the invasion process.


2019 ◽  
Author(s):  
Richard Hickman ◽  
Marciel Pereira Mendes ◽  
Marcel C. Van Verk ◽  
Anja J.H. Van Dijken ◽  
Jacopo Di Sora ◽  
...  

AbstractThe phytohormone salicylic acid (SA) is a central regulator of plant immunity. Antagonistic and synergistic actions between SA and other defense-associated hormones like jasmonic acid (JA) play key roles in determining the outcome of the plant immune response. To obtain a deeper understanding of SA-mediated transcriptional reprogramming and SA/JA crosstalk, we generated a high-resolution time series of gene expression from Arabidopsis leaves treated with SA alone and a combination of SA and methyl JA (MeJA), sampled at 14 time points over a 16-h period. We found that approximately one-third of the Arabidopsis genome was differentially expressed in response to SA, and temporal changes in gene expression could be partitioned into 45 distinct clusters of process-specific coregulated genes, linked to specific cis-regulatory elements and binding of transcription factors (TFs). Integration of our expression data with information on TF-DNA binding allowed us to generate a dynamic gene regulatory network model of the SA response, recovering known regulators and identifying novel ones. We found that 12% of SA-responsive genes and 69% of the MeJA-responsive genes exhibited antagonistic or synergistic expression levels in the combination treatment. Multi-condition co-clustering of the single- and combined-hormone expression profiles predicted underlying regulatory mechanisms in signal integration. Finally, we identified the TFs ANAC061 and ANAC090 as negative regulators of SA pathway genes and defense against biotrophic pathogens. Collectively, our data provide an unprecedented level of detail about transcriptional changes during the SA response and SA/JA crosstalk, serving as a valuable resource for systems-level network studies and functional plant defense studies.


Biomolecules ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 12 ◽  
Author(s):  
Jie Luo ◽  
Wenxiu Xia ◽  
Pei Cao ◽  
Zheng’ang Xiao ◽  
Yan Zhang ◽  
...  

Plants have evolved a sophisticated system to respond to various stresses. Fungal attack or infection is one of the most important biotic stresses for most plants. During the defense response to fungal infection, the plant hormones jasmonic acid (JA) and salicylic acid (SA) play critical roles. Here, gene expression data on JA/SA treatments and Melampsora larici-populina (MLP) infection were generated. Integrated transcriptome analyses of these data were performed, and 943 genes in total were identified as common responsive genes (CRG). Gene ontology (GO) term analysis revealed that the genes from CRG are generally involved in the processes of stress responses, metabolism, and growth and development. The further cluster analysis of the CRG identified a set of core genes that are involved in the JA/SA-mediated response to fungal defense with distinct gene expression profiles upon JA/SA treatment, which highlighted the different effects of these two hormones on plant fungal defenses. The modifications of several pathways relative to metabolism, biotic stress, and plant hormone signal pathways suggest the possible roles of JA/SA on the regulation of growth and defense responses. Co-expression modules (CMs) were also constructed using the poplar expression data on JA, SA, M. larici-populina, Septoria musiva, and Marssonina brunnea treatment or infection. A total of 23 CMs were constructed, and different CMs clearly exhibited distinct biological functions, which conformably regulated the concerted processes in response to fungal defense. Furthermore, the GO term analysis of different CMs confirmed the roles of JA and SA in regulating growth and defense responses, and their expression profiles suggested that the growth ability was reduced when poplar deployed defense responses. Several transcription factors (TFs) among the CRG in the co-expression network were proposed as hub genes in regulating these processes. According to this study, our data finely uncovered the possible roles of JA/SA in regulating the balance between growth and defense responses by integrating multiple hormone signaling pathways. We were also able to provide more knowledge on how the plant hormones JA/SA are involved in the regulation of the balance between growth and plant defense.


Sign in / Sign up

Export Citation Format

Share Document