Investigation of Characteristic Features of Critical Heat Transfer under Conditions of Boiling of Subcooled Hydrocarbons in a Close-to-Critical Pressure Range

2005 ◽  
Vol 43 (3) ◽  
pp. 460-466 ◽  
Author(s):  
R. F. Kelbaliev ◽  
M. Z. Iskenderov
2008 ◽  
Vol 2008.3 (0) ◽  
pp. 193-194
Author(s):  
Yasuhiko TANAKA ◽  
Isao ISHIHARA ◽  
Mamoru OZAWA ◽  
Hisashi UMEKAWA ◽  
Ryosuke MATSUMOTO

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5512
Author(s):  
Slawomir Blasiak

This article presents a variable-order derivative (VOD) time fractional model for describing heat transfer in the rotor or stator in non-contacting mechanical face seals. Most theoretical studies so far have been based on the classical equation of heat transfer. Recently, constant-order derivative (COD) time fractional models have also been used. The VOD time fractional model considered here is able to provide adequate information on the heat transfer phenomena occurring in non-contacting face seals, especially during the startup. The model was solved analytically, but the characteristic features of the model were determined through numerical simulations. The equation of heat transfer in this model was analyzed as a function of time. The phenomena observed in the seal include the conduction of heat from the fluid film in the gap to the rotor and the stator, followed by convection to the fluid surrounding them. In the calculations, it is assumed that the working medium is water. The major objective of the study was to compare the results of the classical equation of heat transfer with the results of the equations involving the use of the fractional-order derivative. The order of the derivative was assumed to be a function of time. The mathematical analysis based on the fractional differential equation is suitable to develop more detailed mathematical models describing physical phenomena.


2022 ◽  
pp. 15-26
Author(s):  
Stanislav Tkachenko ◽  
Olha Vlasenko ◽  
Nataliia Rezydent ◽  
Dmytro Stepanov ◽  
Nataliia Stepanova

Experimental studies of the non-stationary heat exchange in the system «environment I – body II» have been carried out. It is established that in the body II, which consists of the fluid and thin-walled metal envelope, the characteristic features of the regular thermal mode occur, i.e., cooling (heating) rate of the body II- m = const; heat transfer coefficient between the water (environment I) and body II is practically stable α1 = const; uneven temperatures distribution coefficient in the body II ψ = const. This new notion of the heat transfer regularities in the body II is planned to apply for further development of the experimental-calculation method for the forecasting of the heat exchange intensity in the compound fluid media with limited information regarding thermophysical and rheological properties.


Sign in / Sign up

Export Citation Format

Share Document