Design and Operation of Experimental System for Studying Heat Transfer in a Smooth Tube at Near and Super Critical Pressure

Author(s):  
Li Wenkai ◽  
Wu Yuxin ◽  
Li Yan ◽  
Lu Junfu ◽  
Zhang Hai
2020 ◽  
Vol 173 ◽  
pp. 115208
Author(s):  
Dabiao Wang ◽  
Ran Tian ◽  
Lanlan Li ◽  
Xiaoye Dai ◽  
Lin Shi

2018 ◽  
Vol 6 (3) ◽  
pp. 1-12
Author(s):  
Kamil Abdul Hussien

Abstract-The present work investigates the enhancement of heat transfer by using different number of circular fins (8, 10, 12, 16, and 20) in double tube counter flow heat exchanger experimentally. The fins are made of copper with dimensions 66 mm OD, 22 mm ID and 1 mm thickness. Each fin has three of 14 mm diameter perforations located at 120o from each to another. The fins are fixed on a straight smooth copper tube of 1 m length, 19.9 mm ID and 22.2 mm OD. The tube is inserted inside the insulated PVC tube of 100 mm ID. The cold water is pumped around the finned copper tube, inside the PVC, at mass flow rates range (0.01019 - 0.0219) kg/s. The Reynold's number of hot water ranges (640 - 1921). The experiment results are obtained using six double tube heat exchanger (1 smooth tube and the other 5 are finned one). The results, illustrated that the heat transfer coefficient proportionally with the number of fin. The results also showed that the enhancement ratio of heat transfer for finned tube is higher than for smooth tube with (9.2, 10.2, 11.1, 12.1 13.1) times for number of fins (8, 10, 12, 16 and 20) respectively.


1999 ◽  
Author(s):  
Lixin Cheng ◽  
Tingkuan Chen

Abstract Experiments of upward flow boiling heat transfer with water in a vertical smooth tube and a tube with axial micro-grooves were respectively conducted. Both of the tested tubes have a length of 2.5 m, an inner diameter of 15 mm and an outlet diameter of 19 mm. The tube with axial micro grooves has many micro rectangle grooves in its inner wall along the axial direction. The grooves have a depth of 0.5 mm and a width of 0.3 mm. The tests were performed at an absolute pressure of 6 bar. The heat flux ranged from 0 to 550 kW/m2 and the mass flux was selected at 410, 610 and 810 kg/m2s, respectively. By comparison, flow boiling heat transfer coefficients in the enhanced tube are 1.6 ∼ 2.7 fold that in the smooth tube while the frictional pressure drop in the enhanced tube is slightly greater than that in the smooth tube. The augmentation of flow boiling heat transfer in the tube with axial micro-grooves is apparent. Based on the experimental data, a correlation of flow boiling heat transfer is proposed for the enhanced tube. Finally, the mechanisms of heat transfer enhancement are analyzed.


Author(s):  
Xizhen Ma ◽  
Wen Fu ◽  
Haijun Jia ◽  
Peiyue Li ◽  
Jun Li

The non-condensable gas is used to keep the pressure stable in the steam-gas pressurizer. The processes of heat and mass transfer during steam condensation in the presence of non-condensable gas play an important role and the thermal hydraulic characteristics in the pressurizer is particularly complicated due to the non-condensable gas. The effects of non-condensable gas on the process of heat and mass transfer during steam condensation were experimental investigated. A steam condensation experimental system under high pressure and natural convection was built and nitrogen was chosen in the experiments. The steam and nitrogen were considered in thermal equilibrium and shared the same temperature in the vessel under natural convection. In the experiments, the factors, for instance, pressure, mass fraction of nitrogen, subcooling of wall and the distribution of nitrogen in the steam, had been taken into account. The rate of heat transfer of steam condensation on the vertical wall with nitrogen was obtained and the heat transfer coefficients were also calculated. The characteristics curve of heat and mass transfer during steam condensation with non-condensable gas under high pressure were obtained and an empirical correlation was introduced to calculated to heat transfer coefficient of steam condensation with nitrogen which the calculation results showed great agreement with the experimental data.


Author(s):  
Jian-jun Sun ◽  
Jing-xiang Chen ◽  
David J. Kukulka ◽  
Kan Zhou ◽  
Wei Li ◽  
...  

An experiment investigation was performed using R410A in order to determine the single-phase and evaporation heat transfer coefficients on the outside of (i) a smooth tube; (ii) herringbone tube; and (iii) the newly developed Vipertex enhanced surface 1EHT tube; all with the same external diameter (12.7 mm). The nominal evaporation temperature is 279 K, with inlet and outlet qualities of 0.1 and 0.8. Mass fluxes ranged from 10 to 40 kg m−2s−1. Results suggest that the 1EHT tube has excellent heat transfer performance but a higher pressure drop when compared to a smooth tube. Evaporation heat transfer coefficient for the 1EHT is lower than the herringbone tube and the pressure drop is almost the same.


1981 ◽  
Vol 103 (4) ◽  
pp. 705-714 ◽  
Author(s):  
J. C. Biery

A new method is presented to predict heat transfer coefficients for gas flow normal to smooth and finned tube tanks with triangular pitch. A transformation from the actual tube bank to an equivalent equilateral triangular pitch infinite smooth tube bank (ETP-I-STB) is made. A function of Ch(Ch = NSTNPR2/3NRe0.4) versus (Xt D0)Δ, ratio of transverse pitch to tube diameter for the ETP-I-STB, was developed. The Ch for the equivalent ETP-I-STP then applies to the actual tube bank. The method works with circular finned tubes, smooth tubes, continuous finned tubes, and segmented finned tubes with any triangular pitch. Also, fair predictions were made for in-line tubes with high Reynolds numbers.


Sign in / Sign up

Export Citation Format

Share Document