A method of increasing the sensitivity of protection from single-phase short-circuits to ground in the 6 – 10 kV network

2012 ◽  
Vol 46 (2) ◽  
pp. 153-156 ◽  
Author(s):  
A. M. Manilov ◽  
D. A. Mel’nik
Keyword(s):  
2016 ◽  
Vol 5 (1) ◽  
pp. 28-40 ◽  
Author(s):  
Токарский ◽  
A. Tokarskiy ◽  
Рубцова ◽  
Nina Rubtsova ◽  
Рябченко ◽  
...  

To ensure the staff safety under hot-line overhead transmission line (OTL) maintenance, as well as overhead ground-wire cable (OGWC) insulation integrity maintaining, by the example of three-phase 750 kV OTL has been presented an algorithm for calculation of voltages and electromotive forces (EMF) induced in this line’s OGWC by electric and magnetic fields (EF and MF) generated by OTL phases’ voltages and currents. Algorithms for calculation of line-to-earth voltages distribution along grounded at one end OGWC’ intervals have been given. It has been shown that the voltage induced at OGWC by EF of 750 kV OTL is much less than the voltage induced by this OTL’s MF. For single-phase short circuits modes has been presented an algorithm for selection of grounded at one end OGWC’ interval length by condition of respecting of voltage’s maximum permissible level on a spark gap shunting OGWC’s insulator set.


2021 ◽  
Vol 1 (1) ◽  
pp. 23-34
Author(s):  
Mansur A. SHAKIROV ◽  

A topological equivalent circuit for a three-phase three-core transformer reflecting the spatial structure of its magnetic system is developed. Owing to this approach, it became possible to represent the magnetic fluxes of the magnetic circuit’s all main sections and the apertures for each of three phases directly in the circuit in the absence of the windings’ neutral wires. The circuit is constructed by stitching together the anatomical circuit models of single-phase transformers obtained in the previous parts with taking into account the relationships between the fluxes at the junctions of the phase zones in iron. Its validity is confirmed by the rigor nature of the physical and mathematical relations for idealized transformers with infinite magnetic permeability of iron and simplified magnetic field patterns, which corresponds to the generally accepted approach with neglecting the magnetization currents. The difference lies in the fact that the developed model takes into account the heterogeneity of magnetization in different parts of the magnetic circuit with allocating more than 30 sections in the iron and apertures. The transition to the model of a real three-core transformer is carried out by adding four nonlinear transverse magnetization branches in each extreme phase zone and eight branches in the central phase zone to the idealized equivalent circuit. It is shown that in cases of winding connections without neutral wires, there is no flux of the Poynting vector in interphase zones in any unbalanced mode. In this case, the problems connected with the occurrence of fluxes exceeding the no-load fluxes under the conditions of symmetric and asymmetric short circuits, as well as the occurrence of buckling fluxes in these modes in the region outside the transformer iron, are solved.


2020 ◽  
Vol 15 (3) ◽  
pp. 58-63
Author(s):  
Aleksandr Vinogradov ◽  
Alina Vinogradova ◽  
Aleksandr Psarev ◽  
Aleksandr Lansberg ◽  
Vadim Bol'shev

The purpose of the work is to increase the protection efficiency of 0.4 kV power lines with branch lines from single-phase short circuits by means of using the multi-contact switching system MSS-2-3. It can be not possible to provide the necessary sensitivity of protecting 0.4 kV power lines against one-phase short circuits when the power line length is too high and when the wire cross section does not provide the necessary value of the phase-zero loop resistance. Power line sectionalizing helps to solve this problem. It allows dividing power lines into sections, each is protected by its protective device. The settings of the protective devices installed at the beginning of a power transmission line and at the sectioning units (SU) are different. It provides the necessary selectivity of their work. At the same time, many power transmission lines (PTL) have long branch lines. The choice of the installation site of SU in such lines is difficult since a short circuit or other damage can occur both on a trunk line section and on a branch line. When installing SU both before a branch line and behind it, there might be the cases of unjustified power supply outages. Therefore, it is necessary to develop devices allowing for sectionalizing such power lines at the installation site of SU while ensuring the possibility of disconnecting both a trunk line section and a branch line directly. Such a device is a multi-contact switching system having two independent contact groups and three outputs (MSS-2-3). Installing the MSS-2-3 at a branch line point increases the security of the power transmission line against short circuits including single-phase ones and also increases power supply reliability to consumers since only a damaged section is disconnected in case of damage to the power transmission line. The feature of choosing the settings for the operation of switching devices installed in the MKS-2-3 to protect the switched power line sections is the need to take into account the parameters of a trunk line section and a branch line


2021 ◽  
pp. 98-100
Author(s):  
I. Radko ◽  
◽  
V. Nalivayko ◽  
O. Okushko ◽  
I. Bolbot ◽  
...  

According to PUE-2017, each group line must be protected against short circuits. Instant disconnection (cut-off) of the line in the event of short circuits provides an electromagnetic release of the circuit breaker. Reliable tripping is possible if the current of a single-phase short circuit is greater than the instantaneous tripping current. Today on the market are widely available circuit breakers with characteristics "B", "C" and "D", which are characterized by different multiplicities of the cut-off current of the electromagnetic release. Some European companies produce circuit breakers with other characteristics, which greatly expands the possibilities protection of electrical equipment. The difficulty in organizing the selectivity of protection is that the circuit breakers of modular design when switching off short circuits are characterized by the same switching time (not more than 0.05 s). The purpose of the research is to find ways to organize the selectivity of protection in electrical networks with voltage up to 1000 V using reliable values of short-circuit currents. In networks with a voltage of up to 1000 V, the current of a single-phase short circuit can be calculated fairly accurately if the exact values of all sections of the electrical network are known. In practice, it is not always possible to obtain reliable data on the numerical characteristics of the 0.4 kV network to which a new energy facility is connected. Therefore, it is proposed to consider part of the network as an active quadrupole, the characteristics of which are obtained by measurements at the point of connection. For further calculations it is necessary to know the voltage at the clamps of the four-pole scheme and the internal impedance. Based on the theory of four-pole scheme, you can get the original data for calculations without calculating the internal parameters of four-poles scheme. Thus, it is proposed to use a hybrid method for estimating the magnitude of probable short-circuit currents in electrical networks up to 1000 V when designing new energy facilities. Credible values of short-circuit currents will allow to organize selective protection of electric networks.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 160
Author(s):  
Bartosz Rozegnał ◽  
Paweł Albrechtowicz ◽  
Dominik Mamcarz ◽  
Natalia Radwan-Pragłowska ◽  
Artur Cebula

Single-phase short-circuits are most often faults in electrical systems. The analysis of this damage type is taken for backup power supply systems, from small power synchronous generators. For these hybrid installations, there is a need for standard protection devices, such as fuses or miniature circuit breaker (MCB) analysis. Experimental research mentioned that a typical protective apparatus in low-voltage installations, working correctly during supplying from the grid, does not guarantee fast off-switching, while short-circuits occur during supplication from the backup generator set. The analysis of single-phase short-circuits is executed both for current waveform character (including sub-transient and transient states) and the carried energy, to show the problems with the fuses and MCB usage, to protect circuits in installations fed in a hybrid way (from the grid and synchronous generator set).


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4729
Author(s):  
Rafał Tarko ◽  
Jakub Gajdzica ◽  
Wiesław Nowak ◽  
Waldemar Szpyra

The article deals with the problems of single-phase short-circuit current distribution in overhead power lines. Short-circuit disturbances cause many negative phenomena in power networks. Since experimental studies of short-circuits in real networks are practically impossible to perform, these effects can be evaluated only theoretically, based on short-circuit current calculations with the use of appropriate mathematical models. Although short-circuit modeling is considered to be one of the simplest power system calculations, the exact mathematical description of the phenomena occurring at short-circuits is complex. Simplified normative methods are often used for short-circuit current calculations; however, this does not give ground for a thorough analysis of short-circuit current distribution in power lines. The distributions are analyzed using power line models with different degrees of complexity in line with the assumptions made for a given model. The paper presents the problem of current distribution analysis in high-voltage overhead lines for single-phase faults to the tower structures. Simulation studies were conducted on the models developed for the calculation of short-circuit currents in the high-voltage power line earthing. The objective of the analysis was to assess the validity of simplification assumptions followed by practical recommendations on the applicability of the models.


Sign in / Sign up

Export Citation Format

Share Document